
Introduction to Mathematics
in Computer Science

Book for the Mathematics Preparatory Course

Jonathan Baumann, Christian Hagemeier, Johannes Hostert,
Nils Husung, Iona Kuhn, Robert Pietsch, Niklas Schneider

Introduction to Mathematics in Computer Science

Preface

Welcome! This book is a part of the Mathematics Preparatory Course at Saarland University.

If you are reading these lines, you are most likely about to start a new chapter of your life—your

studies in a computer-science-related field at Saarland University. Again, welcome here!

Whether you are studying cybersecurity, bio- or business informatics, data science and artificial

intelligence, media informatics, “plain” computer science, or another related field—in your studies,

you will see, and need, a lot of maths and logics. After all, at its core, computer science is a
particular(ly weird and wonderful) field of mathematics. While formally, the basic lectures will

only require the previous knowledge you bring from school, our experience has shown that

many students struggle with the more formal, mathematical aspects of their studies, and a good

preparatory course can help smooth that journey. Whether you are here to brush up on some

aspects of math you learned previously or want a small head start into the new mathematical

world you are about to enter—our Mathematics Preparatory Course is here for you, and this book

will be your companion throughout.

In the next chapters (and weeks), you will (re-)discover the foundations of logic, learn how to

prove things, and get a new perspective on sets and relations.

Acknowledgements

This book only exists because countless people put their heart and soul into it.

It was primarily written by Jonathan Baumann, Christian Hagemeier, Johannes Hostert,
Nils Husung, Iona Kuhn, Robert Pietsch, and Niklas Schneider.

Elina Celik, Marc Hermes, Janine Lohse, Benjamin Peters, Tim Rohde, Lisa-Marie Rolli, Gregory

Stock, Marcel Ullrich, and Oliver Valta helped shape this book by fighting through early drafts

and by providing additional valuable input. Felix Freiberger additionally provided extremely

valuable advice and kept the writers motivated throughout the entire process.

The Mathematics Preparatory Course would not be possible in its current shape without the

invaluable work put in by Christian and Julia Eisentraut over many years. They also wrote

the German-language book that served as a precursor to, and inspiration for, the book you are

holding in your hands now.

Finally, the whole team of the Mathematics Preparatory Course would like to express their

gratitude towards thewhole department of computer science and especially our executive producer

Erich Reindel for their continued and invaluable support—financial and otherwise—throughout

the existence of this course.

Further Information At The End

Further information for the online book is found at the end, so that page numbers stay consistent.

Book built on October 12, 2022 from commit 68410ce53e9ca2163f2f27db1673e10a8e5278a2

Licensed under Creative Commons Attribution-ShareAlike 4.0

2

https://creativecommons.org/licenses/by-sa/4.0/deed

Contents

Preface 2

Contents 3

1 Formal Languages 5
1.1 Syntax . 6

1.1.1 Backus–Naur Form . 7

1.1.2 Syntax Trees . 8

1.1.3 Precedence Rules . 10

1.1.4 Syntactic Equality . 11

1.1.5 More Complex Languages . 12

1.2 Semantics . 14

1.2.1 Operational Semantics . 14

1.2.2 Denotational Semantics . 20

1.3 Summary . 22

2 Logic 23
2.1 Propositional Logic . 23

2.1.1 Statements and Propositions . 24

2.1.2 Operators . 24

2.1.3 Syntax and Semantics . 26

2.1.4 Implication and Equivalence . 29

2.1.5 Laws . 33

2.2 First-Order Logic . 39

2.2.1 Syntax . 39

2.2.2 Semantics . 47

2.2.3 Working with First-Order Logic . 51

2.2.4 Laws . 57

2.2.5 Theories . 58

3 Proofs and Deductions 61
3.1 A Proof System for Propositional Logic . 62

3.1.1 What Makes a Proof . 62

3.1.2 Proof Tables . 66

3.1.3 Example Proofs . 70

3.1.4 Proof Strategies . 74

3.1.5 Metatheory . 76

3.2 A Proof System for First-Order Logic . 78

3.2.1 Rules for Quantifiers . 79

3.2.2 Rules for Equality . 81

3.3 Proof Tables in Practice . 85

3.4 Textual Proofs . 87

3.4.1 How to Translate a Proof Table . 89

3

Introduction to Mathematics in Computer Science CONTENTS

4 Sets and Relations 97
4.1 Sets . 97

4.1.1 Notation . 99

4.1.2 Set Operators . 101

4.1.3 Tuples . 108

4.1.4 Laws of Set Theory . 112

4.1.5 Cardinality of Finite Sets . 115

4.1.6 Power Sets . 118

4.2 Relations . 121

4.2.1 Notation . 123

4.2.2 Common Properties . 126

4.2.3 Properties of Relations on Universal Sets 130

4.2.4 Equivalence and Order Relations . 134

4.2.5 Cardinality of Infinite Sets . 137

4.3 Problems With Naive Set Theory . 141

5 Inductive Proofs 145
5.1 Natural Induction . 146

5.2 Complete Induction . 153

5.3 Quantified Inductive Hypotheses . 156

5.4 Structural Induction . 158

5.5 Well-founded Induction . 160

5.6 Summary . 164

A Natural Numbers 167

Index 171

4

1
�� Formal Languages

What is a valid arithmetic expression?

This is something you probably never had to think much about, and it may seem very trivial.

Off the top of your head, you could come up with a large number of examples from “2 + 2” to
“1337 × 42 + 1234 × (8765 + 23).”
However, could you come up with a concise set of rules that describes every arithmetic expression?

And can you do it in such a way that it disallows “+ 42 +” or “1+−× 3,” which are not meaningful?

How do we even give meaning to an arithmetic expression?

Of course, you have some very good intuitions about this, and you might think that this is enough.

However, we would very much like to avoid working with intuitions, as they are unreliable

especially when introducing new concepts to someone. To illustrate this, consider the following

example in natural language, which relies on intuitions: “Call me a cab, please.” Your intuition

probably tells you that you’re being asked to make a phone call. However, if you say this to

someone who does not know English very well (and does not yet have the same intuition—maybe

they don’t know the word “cab”), they might just start to refer to you as “a cab” now.

Clearly, we would like to avoid such problems in mathematics, so we would like to describe

everything as precise as possible. To do so, we will introduce formal languages, which are a fairly

abstract concept that allows us to model a wide variety of things. At the most basic level, a formal

language is simply a collection of expressions that adhere to the rules of that language.

We will continue with the example of arithmetic expressions, but you will encounter lots of

other uses in your studies. For example, formal languages are also used to describe programming

languages.

This topic is split into two main areas: syntax is concerned with the rules that describe what

exactly is part of our language and what is not. Semantics, on the other hand, deals with how

we can give meaning to expressions.

� Chapter Goals

In this chapter you will learn:

• What a BNF is and how we can use it to specify the syntax of a language.

• What mathematicians call a tree and why we need precedence rules.

• How to give a meaning to expressions of a language by the means of operational and

denotational semantics.

5

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

1.1 Syntax

The syntax of a language describes which expressions are well-formed, i.e. considered to be part
of this language. Let’s consider arithmetic expressions on natural numbers N = {0, 1, 2, . . .}.1 We

also allow the use of variables. From this brief description, you as an educated person know that

“42 + 1337” is part of our language. You would also agree that “3 − ” is not a valid expression and

hence not part of our language. But how would you explain this to someone who does not know

arithmetic expressions yet?

To make our intuition of arithmetic expressions precise, we could define them as follows:

• Every natural number 𝑛 ∈ N is an arithmetic expression.

• Every variable 𝑥,𝑦, 𝑧, . . . is an arithmetic expression.

• If 𝜑 and𝜓 are arithmetic expressions, then 𝜑 +𝜓 is an arithmetic expression.

• If 𝜑 and𝜓 are arithmetic expressions, then 𝜑 −𝜓 is an arithmetic expression.

• If 𝜑 is an arithmetic expression, then −𝜑 is an arithmetic expression.

• If 𝜑 and𝜓 are arithmetic expressions, then 𝜑 ×𝜓 is an arithmetic expression.

Of course, we could add more operators, but for now, we restrict ourselves to addition, subtraction,

negation and multiplication.

b Checkpoint 1.1: Arithmetic Expressions

Is “4 ÷ 2” an arithmetic expression? What about “42.5 − 0.5” and “𝑥 + 𝑎”?

This approach is not bad; however, it is quite lengthy and uses natural language with all its pitfalls.

But before we have a look at a more elegant presentation, let us dwell on this definition for a bit

longer. What we saw is called an inductive definition. We have six cases, of which the first two

are the base cases and the last four are inductive cases. The difference is that in the base cases, we

can directly construct an arithmetic expression, while in the induction cases, we need to already

have constructed one or two arithmetic expressions. We refer to these expressions using so-called

meta-variables 𝜑 (phi),𝜓 (psi), 𝜌 (rho), . . . Note that meta-variables are not part of our language

itself, we only use them at the meta-level to talk about our language. That is in contrast to the

variables 𝑥,𝑦, 𝑧, . . ., which are arithmetic expressions.

With the definition, we wanted to explicitly spell out what an arithmetic expression is. And

indeed, we clearly point out how we can construct them. But can we actually say that “3 − ” is
not an arithmetic expression? If we really wanted to be precise, then we would need to say that

nothing else than what is derivable from our six rules is an arithmetic expression. But actually,

this is what an inductive definition is about: it defines the set (in our case the language) that is

induced by some rules. So we typically do not spell out the assertion and just take it for granted.

1
Computer scientists typically consider 0 to be part of the natural numbers, and so do we throughout this course.

In your math lectures, however, the natural numbers will probably start with 1.

6

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

1.1.1 Backus–Naur Form

John Backus, a programming language designer at IBM, faced the same problem of lengthy

descriptions when working on IAL, an old programming language that was called ALGOL later

on. This led him to invent a formal notation. The community first called this notation “Backus

normal form”; however, Donald Knuth pointed out that it is not a normal form in the classical

sense. Since some contributions were also made by Peter Naur, the notation finally received its

name “Backus–Naur form,” which is commonly abbreviated as BNF. In this course, we don’t use

the original notation, but a slightly different variant. In this style, the definition of our arithmetic

expressions looks like this:

Definition 1.2 (Arithmetic Expressions).

E ∋ 𝜑,𝜓 F 𝑛 | 𝑥 | 𝜑 +𝜓 | 𝜑 −𝜓 | −𝜑 | 𝜑 ×𝜓 𝑛 ∈ N, 𝑥 is a variable

Let us walk through the definition step by step. What we are defining is the language E. The
meta-variables 𝜑 and𝜓 should denote expressions of this language. We use the inverted element-

of symbol ∋ here to express this. On the right-hand side ofF, we have our six cases again. As 𝑛

and 𝑥 are just placeholders, we remark what they stand for on the right.

b Checkpoint 1.3: ab-BNF

What language does the BNF L ∋ 𝜑 F 𝑎 𝜑 | 𝑏 describe?

There is an important restriction on meta-variables, namely that we can use them only once in

each case. That is, we cannot have a BNF like L ∋ 𝜑 F 𝑎 | 𝑏 | 𝜑 ◦𝜑 . The case 𝜑 ◦𝜑 would impose

that the left-hand and the right-hand side of the ◦ operator are the same. Our BNFs correspond to

what is called context-free grammars. The common programming languages (and even many

natural languages) can be described using context-free grammars. But there are also languages

for which one cannot come up with a BNF, for example the language where every expression has

the structure 𝜑𝜑 . Here, 𝜑 is an arbitrary sequence of characters (and the set of characters must

contain at least two elements). Being non-context-free also applies to natural languages such

as Swiss-German.
2
There are other more powerful grammar formalisms, however it is typically

harder to parse them, i.e. turn the expression into a syntax tree.

� In Other Words: Meta

When talking about a (formal) language, we need some language to talk in. This language

is called themetalanguage. Typically, this metalanguage is a natural language like English

or German, but we can also use formal languages like a BNF. Like the object language
(the language we are studying), the metalanguage can have variables. You already know

them, we call them meta-variables. Later on, we also define the semantics of a language in

terms of the metalanguage. Always keep in mind that we have both an object language

and a metalanguage and strictly separate the two!

2https://en.wikipedia.org/wiki/Cross-serial_dependencies

7

https://en.wikipedia.org/wiki/Cross-serial_dependencies

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

1.1.2 Syntax Trees

You might now wonder why we do not have any parentheses in our language. According to the

BNF, we can derive 1 and 2 + 3. But what if we compose these two expressions with a −? Do we

obtain 1 − 2 + 3? From our mathematical intuition, it should rather be 1 − (2 + 3). And indeed, the
latter would be the correct answer. The point is that the expressions of any language defined by a

BNF are tree-like objects.

Before we continue with our example, let us have a look at what trees are, in the mathematical

sense of course. Trees are quite an important mathematical concept and in computer science,

there are many data structures making use of them. Although there are a few similarities between

our trees and trees in nature, they are more related to family trees. For talking about trees, we

use vocabulary of both areas.

A tree consists of nodes (•) and edges (—) between them. In the form of trees we consider, a tree

has separate levels, just like a family tree. Given a node 𝑥 , there may be a single node 𝑦 on the

level above with an edge to 𝑥 . The node 𝑦 is called the parent of 𝑥 . Conversely, 𝑥 is a child of 𝑦.

Each node may have one or no parent and arbitrarily many children. Nodes that share the same

parent are called siblings. We may draw a tree like this:

< Example 1.4: A Tree

•

•

••

•

•

••

Parent of 𝑥

Node 𝑥

Sibling of 𝑥

Children of 𝑥

Like in a family tree, there are ancestors—the node’s parent, the parent’s parent, the parent of the
parent’s parent, and so on—as well as descendants—the node’s children, the children’s children,
and so on. Oftentimes, we need to speak of the ancestors or descendants including the node itself.

Since we are lazy about writing, we usually define the ancestors and descendants such that they

include the node itself. We remark that this is controversial, so you may find contexts in which

this is not the case. But in this course, a node is an ancestor and a child of itself.

There are some special nodes: a node without a parent is called a root and a node without children
is called a leaf. So like in nature, our trees are branching from the root towards the leafs. However,

our graphical representation is upside down compared to nature.

All nodes which are not leafs also have a special name, they are called inner nodes. Our trees
have exactly one root. That is why the trees of our form are called rooted trees.3

There are a few more concepts related to trees, but we just introduce one more term: a subtree
starting at a node 𝑠 is the tree containing all the descendants of 𝑠 .

Now, let’s return to our example expression. In Figure 1.7 it is depicted as a syntax tree. Observe
that instead of the “uninformative” •-nodes, we have information attached to the nodes. Concretely,

3
In general, a tree is just a graph without cycles. But without a unique root, the concepts of children and parents

do not work.

8

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

< Example 1.5: Subtrees

The tree presented in Example 1.4 has 4 distinct subtrees:

•

•

••

•

•

••

•

•

••

•

••

•

b Checkpoint 1.6: The Language of Trees

Give a BNF for binary trees, trees with at most two children per node. You may

use constructs like the one on the right.

•

𝜑

we annotate the nodes with the corresponding case of the BNF. In general, trees with annotations

are called labeled trees, and syntax trees are a special kind thereof.

−

+

32

1

Figure 1.7: Syntax tree corresponding to (1 − (2 + 3))

Note that all the terms related to trees from above also apply here: the base cases of our inductive

definition (variables and numbers) correspond to leaves and the induction cases match the inner

nodes.

If we always had to draw such a tree to denote an arithmetic expression, we would have ended

up in a big mess. Fortunately, there is a shorter way: one writes it in a linear fashion and

parenthesizes every subtree. Typically one omits the parentheses around leaves. Using this

convention, the example expression can be written as (1 − (2 + 3)). We call such an expression

fully parenthesized.

< Example 1.8: Fully Parenthesized Expressions and Their Syntax Trees

((−3) × (4 − 8)) ((𝑎 × 42) + 7) ((1 − 1) − (𝑥 − 𝑥))

×

−

84

−

3

+

7×

42𝑎

−

−

𝑥𝑥

−

11

There is a one-to-one correspondence between syntax-trees and fully parenthesized expressions.

Especially the aspect that each linearized expression has a unique syntax tree is important—

otherwise we might have to guess what the expression really “means.” We have to keep this

9

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

uniqueness-property when we make our life even easier with so-called precedence rules next up.

But before we continue, one final remark: parentheses are still not part of our language. They are

just used as an external means to denote a syntax tree in a linear fashion.

b Checkpoint 1.9: Syntactic Equality

Do ((1 + 1) + 1) and (1 + (1 + 1)) have the same syntax tree? Are these expressions equal?

1.1.3 Precedence Rules

Having to write fully parenthesized is still not desirable. We would rather want to elide unneces-

sary parentheses. For this, we use so-called precedence rules. There are two important aspects

we specify: how strong an operator binds as well as the operator’s associativity. From what

you have learned in school you know that 2 + 3 × 4 is implicitly parenthesized as 2 + (3 × 4).
We say that × binds stronger than +, or × has higher precedence than +. You also know, that

2 − 1 − 1 is implicitly parenthesized as (2 − 1) − 1. In general, if we have multiple operators

of the same precedence level and group them from the left, we say that these operators are

left-associative. So − is a left-associative operator. Conversely, if we group multiple operators

of the same precedence level from the right, these are right-associative. You might now wonder

whether there is an example of a right-associative operator. Indeed, the arithmetic expressions

we have considered so far do not have such an operator, so let’s extend them a little:

Definition 1.10 (Extended Arithmetic Expressions).

E ∋ 𝜑,𝜓 F 𝑛 | 𝑥 | 𝜑 +𝜓 | 𝜑 −𝜓 | −𝜑 | 𝜑 ×𝜓 | 𝜑 ÷𝜓 | 𝜑∧𝜓 𝑛 ∈ N, 𝑥 is a variable

As already hinted,
∧
is a right-associative operator, that is 𝜑∧𝜓∧𝜌 is implicitly parenthesized

as 𝜑∧(𝜓∧𝜌). We use the notation 𝜑∧𝜓 instead of the more common 𝜑𝜓 here. This is because
∧

behaves a bit more like the other operators. If we have 𝜑𝜓+𝜌 for instance, the exponent is already

implicitly parenthesized (i.e. 𝜑 (𝜓+𝜌)).

Now, let’s have a look at all the rules. To distinguish the two − operators, we call the one with a

single operand unary and the one with two operands binary.

Definition 1.11 (Precedence Rules for Arithmetic Expressions).

Operator Precedence level Associativity
∧ 3 right
− (unary) 2 —
×, ÷ 1 left
+, − (binary) 0 left

< Example 1.12: Fully and Minimally Parenthesized Expressions

• ((1 + 2) + 3) = 1 + 2 + 3
• ((3 − 2) + 1) = 3 − 2 + 1

• (2 × ((−3)∧4)) = 2 × (−3)∧4
• ((10 ÷ (−2))∧2) = (10 ÷ −2)∧2

10

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

Just a quick remark on the example: writing 10 ÷ −2 may look strange. In maths, one would

rather write 10 ÷ (−2). But 10 ÷ −2 is completely fine by our precedence rules and we wanted the

minimal number of parentheses here. In practice, we rather want to write an expression such

that it can easily be read by others. For this, it usually is a good idea to remove unnecessary

parentheses. But in some cases, a technically redundant parenthesis can improve readability, and

thus should be added, even if it is not strictly necessary. As a general rule, it is never wrong to

add more parentheses.

Note that we did not specify the associativity of the unary −. The concept of left- or right-

associativity only applies to binary infix operators. Infix notation means that the operator is

written in between the operands. There is also prefix notation where the operator is written in

front of all its operands (e.g. × (+ 3 4) 2), as well as postfix notation where the operator comes

last.

Now imagine that you are given an expression that is not necessarily fully parenthesized, say

−𝑥∧(3 + (−2))∧2 ÷ 2 ÷ 3. How would you go about drawing its syntax tree? The idea is to work

from the lowest to the highest precedence level. If an operator is left-associative, start with the

right-most occurrence, if it is right-associative with the left-most occurrence. And do not consider

everything inside parentheses until you are finished with the highest precedence level. When

beginning with an expression inside parentheses, start again with the lowest precedence level.

This way you can draw the tree from top to bottom. Try applying this procedure to the expression

above!

b Checkpoint 1.13: Associative Operators

You know that there are associativity laws for + and ×, i.e. (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) and
(𝑥 ×𝑦) ×𝑧 = 𝑥 × (𝑦×𝑧) at the semantic level. Do we actually need to specify the operator’s

associativity here?

One final remark on precedence rules: We did only specify them for arithmetic expressions so far.

If you come up with a new language, you have to either write fully parenthesized expressions or

define precedence rules as well. Otherwise, our requirement that each valid linearized expression

must correspond to exactly one syntax tree is not fulfilled.

1.1.4 Syntactic Equality

One thing that we only considered in the checkpoints so far is the equality of expressions. If

you wrote something like 1 + 1 = 2 back in primary school, you considered the semantics of

the expressions 1 + 1 and 2. However, we have not defined any semantics for our arithmetic

expressions yet. Then how could we write ((1 + 2) + 3) = 1 + 2 + 3 in Example 1.12? The answer

is that we were only concerned about syntactic equality.

Definition 1.14 (Syntactic Equality). Two expressions are syntactically equal if and only if 4they
have the same syntax tree.

Note that this is a meta-level property. The = sign does not belong to the language of arithmetic

expressions but to the meta-language.

4
“If and only if” is common to express an implication in two directions “if A then B” and “if B then A.” In fact, “if

and only if” is so common that it is frequently abbreviated as “iff.” More on this in Section 2.1.

11

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

Looking back at Checkpoint 1.13, it becomes clear that the associativity laws at the semantic level

do not influence which precedence rules we need. Note furthermore that the “=” there does not

mean syntactic equality, but semantic equality instead. In Section 1.2, we formally define what

our arithmetic expressions actually mean, thereby defining semantic equality. But for now, we

rather care about the syntax and we should strictly separate different notions of equality.

1.1.5 More Complex Languages

Sometimes, it might be handy to use multiple BNFs in conjunction. If you want to model decimal

numbers, we could do it like this:

D ∋ 𝜑 F 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| 0𝜑 | 1𝜑 | 2𝜑 | 3𝜑 | 4𝜑 | 5𝜑 | 6𝜑 | 7𝜑 | 8𝜑 | 9𝜑

However, needing two cases for every numeral is not really desirable. What if we were able to

get rid of the base cases and replace them with a symbol (𝜀) representing literally nothing? Then,

our BNF would look like this:

D′ ∋ 𝜑 F 𝜀 | 0𝜑 | 1𝜑 | 2𝜑 | 3𝜑 | 4𝜑 | 5𝜑 | 6𝜑 | 7𝜑 | 8𝜑 | 9𝜑

Technically, the syntax trees of 123 in D and D′ are a bit different:

•

•

32

1

•

•

•

𝜀3

2

1

Figure 1.15: Syntax tree of 123 in D and D′

This is one of the drawbacks of using 𝜀. Furthermore, grammars containing 𝜀 are unsuitable

for some parsing approaches. However, it is possible to transform grammars containing 𝜀 into

grammars not containing it. And fortunately, there is also a shorter way to model decimal numbers

with only a single case per numeral. The trick is to use multiple BNFs:

D1 ∋ 𝜑 F 𝜓 | 𝜓 𝜑
D2 ∋ 𝜓 F 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

It is even possible to have mutually inductive definitions (here, we don’t model decimal

numbers):

X1 ∋ 𝜑 F 𝜑 ◦𝜓 | 𝜓
X2 ∋ 𝜓 F 𝜌 •𝜓 | 𝜌
X3 ∋ 𝜌 F 1 | 2 | ⟨𝜑⟩

12

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

b Checkpoint 1.16: Mysterious Languages

You might ask whether the language X1 is equivalent to the following language:

X ∋ 𝜑,𝜓 F 𝜑 ◦𝜓 | 𝜑 •𝜓 | 1 | 2 | ⟨𝜑⟩

It turns out that the syntax trees in X1 are more constrained than the ones in X. How?
Does it encode precedence rules in some way?

Ç Going Beyond: Concrete vs. Abstract Syntax

Do you remember our discussion about missing parentheses from the introduction? This

discussion might seem strange now if we do not consider parentheses to be part of our

languages anyway. But the thoughts there were not pointless at all: if we want to specify

the syntax of a programming language, we should also specify where parentheses are

needed. The answer is that there are two levels: concrete syntax and abstract syntax.
So far, we only considered the latter.

The goal of concrete syntax in the context of programming languages is to define a way

to transform the source code into an abstract syntax tree. This is typically done in two

steps: First, we have a lexer that splits the input into tokens or words. In a second step,

the parser turns this token stream into a phrase, which again has a tree-like structure. If

we then strip of things like parentheses, we arrive at the abstract syntax tree (commonly

abbreviated as AST).
If you have a look at the specification of a programming language like C

a
, then you will

find a description of the concrete syntax, usually in a shape that more or less corresponds

to a BNF. The following is just a small excerpt from C’s language syntax summary. The

entire summary spans 17 pages.

(6.8) statement:

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

[. . .]

(6.8.3) expression-statement:

expressionopt ;

(6.8.4) selection-statement:

if (expression) statement
if (expression) statement else
statement
[. . .]

The abstract syntax is typically not specified as it is rather subject to the implementation of

the compiler. One just picks the representation that suits one’s needs best. When defining

the semantics of arithmetic expressions next, we will have to cover every case of our BNF.

If we do not have an extra case for parentheses, it makes our definition shorter and nicer.

a
For a draft of the C11 specification see https://www.open-std.org/jtc1/sc22/wg14/www/docs/

n1570.pdf

13

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

1.2 Semantics

Now it is time to give meaning to our arithmetic expressions. There are different possibilities

to do this. In this chapter, we will learn about two common kinds of semantics: operational
semantics and denotational semantics.

1.2.1 Operational Semantics

When defining the semantics of a language, we relate its expressions to some kind of values, in

our case the real numbers. We express the fact that an expression 𝜑 evaluates to a value 𝑣 as

𝜑 ⊲ 𝑣 . So for example 1 + (2 − 3) ⊲ 0. But why does this hold? Well, because 2 − 3 evaluates to −1,
1 evaluates to itself and 1+ (−1) = 0. A little bit more general: when does 𝜑 +𝜓 ⊲ 𝑣 hold? Precisely

when all of the following conditions hold:

(a) 𝜑 ⊲ 𝑣 ′

(b) 𝜓 ⊲ 𝑣 ′′

(c) 𝑣 = 𝑣 ′ + 𝑣 ′′

When defining operational semantics, we essentially ask and answer questions like these. Note

that all symbols in (c) as well as the ⊲ are part of the meta-language. Only the left-hand side

of ⊲ we write expressions of our object language, the arithmetic expressions. So actually, we

are defining addition of arithmetic expressions using the addition we have at the meta-level.

This might seem pointless at first. However, imagine you are programming a calculator. Your

programming language provides primitive operations such as addition to you. The arithmetic

expressions you need to handle are a less primitive data structure. When writing the evaluation

function—in other words: defining the semantics of arithmetic expressions—, you have to connect

the arithmetic expressions to the primitive operations you have.

You might still wonder what exactly the difference between = and ⊲ is. While ⊲ denotes “evaluates

to,” = denotes equality. We can write 1 + 2 = 3 because 1 + 2 and 3 represent the same number.

And yes, we really mean numbers here, not expressions. However, if 1 + 2 denoted an arithmetic

expression instead (and 3 still meant the number), then we could not write 1 + 2 = 3. This is

because they do not even have the same type. It’s like comparing apples with oranges.

Furthermore, ⊲ is somehow tied to computation (we’ll see in a moment how). This is not the case

for equality. If you saw something like 1 + 2 = _ back in primary school, nobody (except your

teacher, probably) would have stopped you from writing 42 − 39.
But now, let’s return to defining operational semantics. Because doing so in a textual form like

above would be a bit tedious, computer scientists have invented the following notation:

Add

𝜑 ⊲ 𝑣 ′ 𝜓 ⊲ 𝑣 ′′ 𝑣 = 𝑣 ′ + 𝑣 ′′

𝜑 +𝜓 ⊲ 𝑣

Such a beast is called an inference rule. Above the line, there are the premises, below there is

the conclusion. If all premises hold, then the conclusion holds as well. If a rule has no premises,

then its conclusion holds unconditionally. We call such rules axioms.

14

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

Having to write premises of the form 𝑣 = 𝑣 ′ + 𝑣 ′′ is still more verbose than needed, instead we

define our rules like this:

Definition 1.17 (Operational Semantics of Arithmetic Expressions Without Variables).

Val

𝑛 ⊲ 𝑛

Add
𝜑 ⊲ 𝑣 𝜓 ⊲ 𝑣 ′

𝜑 +𝜓 ⊲ 𝑣 + 𝑣 ′

Sub
𝜑 ⊲ 𝑣 𝜓 ⊲ 𝑣 ′

𝜑 −𝜓 ⊲ 𝑣 − 𝑣 ′

Neg
𝜑 ⊲ 𝑣

−𝜑 ⊲ −𝑣

Mul
𝜑 ⊲ 𝑣 𝜓 ⊲ 𝑣 ′

𝜑 ×𝜓 ⊲ 𝑣 × 𝑣 ′

Div
𝜑 ⊲ 𝑣 𝜓 ⊲ 𝑣 ′

𝜑 ÷𝜓 ⊲
𝑣

𝑣 ′

Exp
𝜑 ⊲ 𝑣 𝜓 ⊲ 𝑣 ′

𝜑∧𝜓 ⊲ 𝑣𝑣
′

We call such a collection of inference rules a calculus. This calculus might seem a little pointless

now, especially the rule Val. But 𝑛 and 𝑛 are not the same here: on the left-hand side of ⊲, we have

an arithmetic expression, while on the right-hand side, there is the corresponding real number

(i.e. an element of R). And without the Val rule, we would not know whether 1 + 1 ⊲ 2: only the

Add rule matches for our expression 1+ 1, however it has two times the premise 1 ⊲ 1. Besides Val,

there is no rule to match the expression 1, so we would not be able to justify 1 ⊲ 1 and ultimately

1 + 1 ⊲ 2.
But now let’s have a look at how to evaluate an expression:

< Example 1.18: Evaluating an Arithmetic Expression

Add

Val

1 ⊲ 1
Sub

Val

2 ⊲ 2
Val

3 ⊲ 3

2 − 3 ⊲ −1
1 + (2 − 3) ⊲ 0

Note that if we work from bottom to top, we always consider the outermost operator first.

We call the evaluation as it is written above a derivation tree. After all, the evaluation has a

tree-like structure: it has a root at the bottom and it is branching towards the top. If we read the

tree from top to bottom, we have 2 ⊲ 2 and 3 ⊲ 3 at some point. Now using the rule Sub, we may

derive 2 − 3 ⊲ −1. So this is where the name comes from.

A derivation tree is only complete if all premises are justified by some rule. This means that at

the top of the tree, there are usually axioms. However, sometimes there are side-conditions that

are not subject to our calculus. For example, this is the case for 𝑣 = 𝑣 ′ + 𝑣 ′′ from our first version

of the Add rule. Then we just leave this part of the tree open (i.e. do not draw a line above the

premise) and check the condition separately.

When evaluating a few expressions by yourself, you will notice that this is an entirely mechanical

procedure. Indeed, one could implement the inference rules in a program and let the computer do

the work for us. (This is exactly what a calculator does!) While the computer really needs this

level of detail, it is a little ugly for us humans. Even evaluating small expressions can produce

large derivation trees.

Can we use operational semantics to define the meaning of other languages? Of course we can.

15

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

Do you remember the language of (binary) trees in Checkpoint 1.6? If we are not interested in a

nice graphical representation, we can use the following BNF:

Definition 1.19 (Trees).
T ∋ 𝜑,𝜓 F 𝐿 | 𝑈 𝜑 | 𝐵 𝜑 𝜓

𝐿 stands for a leaf,𝑈 for a node with only one child and 𝐵 for a node with two children. The size
of a tree is defined as the number of nodes. We can formalize this definition as follows:

Definition 1.20 (Size of a Tree).

SLeaf

𝐿 ⊲ 1

SUnary
𝜑 ⊲ 𝑣

𝑈 𝜑 ⊲ 1 + 𝑣

SBinary
𝜑 ⊲ 𝑣 𝜓 ⊲ 𝑣 ′

𝐵 𝜑 𝜓 ⊲ 1 + 𝑣 + 𝑣 ′

b Checkpoint 1.21: More (Operational) Tree Semantics

• What is the meaning of the following semantics?

DLeaf

𝐿 ⊲ 1

DUnary

𝜑 ⊲ 𝑣

𝑈 𝜑 ⊲ 1 + 𝑣

DBinary

𝜑 ⊲ 𝑣 𝜓 ⊲ 𝑣 ′

𝐵 𝜑 𝜓 ⊲ 1 +max(𝑣, 𝑣 ′)

• The breadth of a tree is the count of leaves. Give operational semantics for that.

Now our language of arithmetic expressions also has variables. But if we have an expression 𝑥 ,

where should the value of 𝑥 come from? The idea is to use a so-called environment 𝜌 , a function5

that maps variables to values. We can denote an environment like this: [𝑥 ↦→ 42, 𝑦 ↦→ 0, 𝑧 ↦→ 𝜋].
The arrow ↦→ reads as “maps to,” so in this case 𝑥 is mapped to 42, 𝑦 is mapped to 0, and 𝑧 to 𝜋 .

To express that 𝜌 maps 𝑥 to 42, we also write 𝜌 (𝑥) = 42.

Now the evaluation of an expression depends on the environment. So we write the fact that an

expression 𝜑 evaluates to a value 𝑣 in an environment 𝜌 as 𝜌 ⊢ 𝜑 ⊲𝑣 . The ⊢ sign is called “turnstile.”

Let us adjust the definition:

Definition 1.22 (Operational Semantics of Arithmetic Expressions).

Val

𝜌 ⊢ 𝑛 ⊲ 𝑛

Var
𝜌 (𝑥) = 𝑣
𝜌 ⊢ 𝑥 ⊲ 𝑣

Add
𝜌 ⊢ 𝜑 ⊲ 𝑣 𝜌 ⊢ 𝜓 ⊲ 𝑣 ′

𝜌 ⊢ 𝜑 +𝜓 ⊲ 𝑣 + 𝑣 ′

Sub
𝜌 ⊢ 𝜑 ⊲ 𝑣 𝜌 ⊢ 𝜓 ⊲ 𝑣 ′

𝜌 ⊢ 𝜑 −𝜓 ⊲ 𝑣 − 𝑣 ′

Neg
𝜌 ⊢ 𝜑 ⊲ 𝑣

𝜌 ⊢ −𝜑 ⊲ −𝑣

Mul
𝜌 ⊢ 𝜑 ⊲ 𝑣 𝜌 ⊢ 𝜓 ⊲ 𝑣 ′

𝜌 ⊢ 𝜑 ×𝜓 ⊲ 𝑣 × 𝑣 ′

Div
𝜌 ⊢ 𝜑 ⊲ 𝑣 𝜌 ⊢ 𝜓 ⊲ 𝑣 ′

𝜌 ⊢ 𝜑 ÷𝜓 ⊲
𝑣

𝑣 ′

Exp
𝜌 ⊢ 𝜑 ⊲ 𝑣 𝜌 ⊢ 𝜓 ⊲ 𝑣 ′

𝜌 ⊢ 𝜑∧𝜓 ⊲ 𝑣𝑣
′

5
Technically, this function is partial, meaning that it does not need to define the values of all possible variables. It

is also finite.

16

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

This calculus isn’t too different from our first one without variables: we add the Var rule where

we look up the value of some value in the environment. Note that the lookup 𝜌 (𝑥) = 𝑣 is some

kind of a side-condition. We cannot derive it from the rules of the calculus. So as mentioned

above, we leave this premise open when drawing the derivation tree and just check the condition

separately.

The second difference is that we carry around the environment in all other rules. Because we

only have these two differences, the way in which we evaluate expressions does not change a lot,

as can be seen in Example 1.23.

< Example 1.23: Evaluating an Arithmetic Expression with Variables

Assume the environment 𝜌 B [𝑥 ↦→ 2, 𝑦 ↦→ 1337, 𝑧 ↦→ 52]. We obtain:

Add

Mul

Neg

Var

𝜌 (𝑥) = 2

𝜌 ⊢ 𝑥 ⊲ 2

𝜌 ⊢ −𝑥 ⊲ −2
Val

𝜌 ⊢ 5 ⊲ 5
𝜌 ⊢ −𝑥 × 5 ⊲ −10

Var

𝜌 (𝑧) = 52

𝜌 ⊢ 𝑧 ⊲ 52
𝜌 ⊢ −𝑥 × 5 + 𝑧 ⊲ 42

Note that × and − bind stronger than +, so there is no other way than first applying the

Add rule (reading the tree from bottom to top).

Instead of writing 𝜌 in the tree, we could also have used [𝑥 ↦→ 2, 𝑦 ↦→ 1337, 𝑧 ↦→ 52], but
then we would probably have run out of space. If a task asks you to evaluate an expression

in an environment [𝑎 ↦→ 0, . . .] it is always fine to give the environment a name first and

use that name in the derivation tree.

b Checkpoint 1.24: Adding Bindings to the Environment

Only reading from the environment is a bit boring. We extend the definition of arithmetic

expressions by let-bindings:

E ∋ 𝜑,𝜓 F . . . | let 𝑥 = 𝜑 in𝜓 .

Given an environment 𝜌 , let 𝑥 = 𝜑 in𝜓 should evaluate 𝜑 in 𝜌 first. Let’s call the result 𝑣 ′.
Then,𝜓 should be evaluated in 𝜌 with 𝑥 bound to 𝑣 ′ and the result should be returned. So

for example,

[𝑎 ↦→ 2, 𝑏 ↦→ 1337] ⊢ let 𝑏 = 20 × 𝑎 in 𝑎 + 𝑏 ⊲ 42.

We can denote “𝜌 with 𝑥 bound to 𝑣 ′” as 𝜌, 𝑥 ↦→ 𝑣 ′. In the example, we evaluate 𝑎 + 𝑏 in

[𝑎 ↦→ 2, 𝑏 ↦→ 1337], 𝑏 ↦→ 20 = [𝑎 ↦→ 2, 𝑏 ↦→ 20] .

Come up with an inference rule for let-bindings.

If you are lazy about writing, you might ask whether you should use Definition 1.22 or Defini-

tion 1.17 to evaluate an expression when it does not contain any variables and no environment is

17

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

given. Using Definition 1.22 would mean to always write [] ⊢ or ∅ ⊢ in front of 𝜑 ⊲ 𝑣 (both [] and
∅ denote the empty environment). The solution is: we consider 𝜑 ⊲ 𝑣 to be syntactic sugar for
[] ⊢ 𝜑 ⊲ 𝑣 , so you can ignore Definition 1.17 from now on.

In case you wonder about the term “syntactic sugar”: in the context of formal languages, it is

useful to distinguish the core language and derived constructs. For each construct of the core

language, you need to specify semantics, for instance in the shape of an inference rule. Now

if you want to prove some property of your language, you often need to consider all inference

rules. Having fewer inference rules shortens your proof. However, a smaller core language can

be inconvenient to work with. Thus, such core languages are often cleverly designed such that

the core language can encode more powerful construct without having to amend its definition.

Such transformations at the syntactic level are what we call syntactic sugar.

< Example 1.25: Subtraction as Syntactic Sugar

Our arithmetic expressions have addition, subtraction, and negation. If we wanted to keep

the language minimal, we might notice that 𝑎 − 𝑏 = 𝑎 + (−𝑏). Thus, we could remove

subtraction from our arithmetic expressions without really changing the expressive power

of that language. We could then define the following syntactic sugar.

𝑒1 − 𝑒2 := 𝑒1 + (−𝑒2)

This then means that we can simply write 𝑎 − 𝑏, while knowing that what is actually

written there is 𝑎 + (−𝑏).

18

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

Ç Going Beyond: Small-Step Semantics

You might imagine that one can use the operational semantics we have seen to define the

semantics of programming languages. However, there might be an issue depending on the

kind of programming language we are trying to define: we do not specify an evaluation

order for the operands of binary operators. In our case, this does not matter since we do

not have any language construct with side effects. Let us change this by adding a function

print (𝑠) that prints the given string and returns the number of characters printed. Now we

would like print ("Hello ") + print ("World!") to evaluate to 12 with “Hello World!” printed

(and not “World!Hello ”, which we would obtain in case of right-to-left evaluation order).

Instead of specifying how to obtain the overall result of an expression, we now define

single steps of computation. We also need to keep track of what has been printed so far, so

we write our computation steps like this:

(𝜑, 𝜌, 𝑜) ≻ (𝜑 ′, 𝜌 ′, 𝑜 ′)

On the left-hand side of ≻, we have a triple of the expression, the environment and the

output before the computation step. On the right-hand side, there is the corresponding

triple after the computation step. Our semantics now looks like this:

Print

(print (𝑠), 𝜌, 𝑜) ≻ (|𝑠 |, 𝜌, 𝑜 ++ 𝑠)

Var

𝜌 (𝑥) = 𝑣
(𝑥, 𝜌, 𝑜) ≻ (𝑣, 𝜌, 𝑜)

AddL

(𝜑, 𝜌, 𝑜) ≻ (𝜑 ′, 𝜌 ′, 𝑜 ′)
(𝜑 +𝜓, 𝜌, 𝑜) ≻ (𝜑 ′ +𝜓, 𝜌 ′, 𝑜 ′)

AddR

(𝜓, 𝜌, 𝑜) ≻ (𝜓 ′, 𝜌 ′, 𝑜 ′) 𝑣 is a value

(𝑣 +𝜓, 𝜌, 𝑜) ≻ (𝑣 +𝜓 ′, 𝜌 ′, 𝑜 ′)

Add

𝑣 = 𝑣 ′ + 𝑣 ′′ 𝑣 ′, 𝑣 ′′ are values

(𝑣 ′ + 𝑣 ′′, 𝜌, 𝑜) ≻ (𝑣, 𝜌, 𝑜)

|𝑠 | denotes the length of 𝑠 , ++ is the concatenation of two strings. We omit the other

operators as the corresponding rules do not differ a lot from the three Add rules. However,

there is no Val rule because no further computation steps are needed for values. Evaluating

our example expression involves the following steps:

(print ("Hello ") + print ("World!"), [], "") ≻ (6 + print ("World!"), [], "Hello ")
≻ (6 + 6, [], "Hello World!") ≻ (12, [], "Hello World!")

For every step of computation there is a derivation tree justifying it, like this one:

AddL

Print

(print ("Hello "), [], "") ≻ (6, [], "Hello ")
(print ("Hello ") + print ("World!"), [], "") ≻ (6 + print ("World!"), [], "Hello ")

Note that requiring 𝑣 to be a value in the AddR rule is crucial to enforce left-to-right

evaluation order. If we omitted this, the AddR rule would have matched for the first

computation step, so the evaluation order would have been non-deterministic.

The kind of semantics we just defined is called small-step semantics or structural
operational semantics and—as the latter suggests—a subkind of operational semantics.

What we have seen before is called big-step semantics or sometimes natural semantics.

19

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

1.2.2 Denotational Semantics

Now let us turn to the second kind of semantics, denotational semantics. The idea is that we
describe what an expression means in terms of our meta-language. Because our meta-language

is mathematics, denotational semantics are sometimes called mathematical semantics as well.
Defining semantics for arithmetic expressions without variables is straightforward:

Definition 1.26 (Semantics of Arithmetic Expressions Without Variables).

EJ𝑛K B 𝑛

EJ𝜑 +𝜓K B EJ𝜑K + EJ𝜓K
EJ𝜑 −𝜓K B EJ𝜑K − EJ𝜓K
EJ−𝜑K B −EJ𝜑K

EJ𝜑 ×𝜓K B EJ𝜑K × EJ𝜓K

EJ𝜑 ÷𝜓K B EJ𝜑KEJ𝜓K
EJ𝜑∧𝜓K B (EJ𝜑K)EJ𝜓K

< Example 1.27: Evaluating an Arithmetic Expression

EJ5 + 4 − 2 × 3K = EJ(5 + 4) − (2 × 3)K
= EJ5 + 4K − EJ2 × 3K
= (EJ5K + EJ4K) − (EJ2K × EJ3K)
= (5 + 4) − (2 × 3) = 9 − 6 = 3

In the first step, we do not use any of the defining equations. We just add some parentheses

to not mess up. In the second step, we evaluate the − operator, which is the outermost.

Note that there is no other way than doing this. One must not evaluate a subexpression

like 5 + 4 before that. As an exercise, evaluate this expression using operational semantics

and relate the order of reduction steps.

What we do here is to define a function E which maps arithmetic expressions (without variables)

to real numbers R.6 The name does not matter much, it does not necessarily have to coincide

with the language’s name. In fact, people tend to omit this name if there is only one semantics

function in the context. The function’s definition consists of seven defining equations. Observe
that the function refers to itself in every defining equation except the first. Functions that refer to

themselves are called recursive.

When defining a recursive function, we should be careful about a few aspects:

• We must not have two different definitions for the same argument. We also say that the

defining equations must be disjoint.

6
Technically, this mapping is partial, since

0

0
(at the meta-level) is not defined. Similarly, −1

1

2 =
√
−1 = 𝑖 is a

complex but not a real number. Then, of course, EJ0× (0÷ 0)K is undefined as well—we need all operands to be defined
for the result to be defined.

20

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

• We should define the function for every argument. One also speaks of the defining equations

to be complete.

• We should avoid infinite recursion. For example, infinite recursion would occur in this

definition: E′J𝜑 +𝜓K B E′J1 +𝜓K. If we had infinite recursion, then the function would be

undefined for some arguments. In case of our denotational semantics, there is a convenient

way to ensure that the recursion terminates: apply the function to subexpressions only—like

we did in the definition above.

Note that using the semantics brackets J·K is just some fancy notation. There is no particular reason

to not use the notation for functions you already know (e.g. 𝑓 (𝑛) B 𝑛, 𝑓 (𝜑 +𝜓) B 𝑓 (𝜑) + 𝑓 (𝜓)
etc.). It is just conventional to use the semantics brackets, so we stick to this notation.

Let us now turn towards a more interesting example. Recall our BNF for the language of (binary)

trees: T ∋ 𝜑,𝜓 F 𝐿 | 𝑈 𝜑 | 𝐵 𝜑 𝜓 . Using denotational semantics, we can now define the size of
a tree as follows:

Definition 1.28 (Size of a Tree).

T𝑠J𝐿K B 1

T𝑠J𝑈 𝜑K B 1 + T𝑠J𝜑K
T𝑠J𝐵 𝜑 𝜓K B 1 + T𝑠J𝜑K + T𝑠J𝜓K

b Checkpoint 1.29: More (Denotational) Tree Semantics

• What is the meaning of the following semantics?

TdegJ𝐿K B 0

TdegJ𝑈 𝜑K B max(1,TdegJ𝜑K)
TdegJ𝐵 𝜑 𝜓K B 2

• Remember that the breadth of a tree is the count of leaves. Give a semantics function

for that.

Let us finally give semantics to variables. Again, we use an environment 𝜌 . Our definition now

looks as follows:

Definition 1.30 (Semantics of Arithmetic Expressions).

EJ𝑛K𝜌 B 𝑛

EJ𝑣K𝜌 B 𝜌 (𝑣)
EJ𝜑 +𝜓K𝜌 B EJ𝜑K𝜌 + EJ𝜓K𝜌
EJ𝜑 −𝜓K𝜌 B EJ𝜑K𝜌 − EJ𝜓K𝜌
EJ−𝜑K𝜌 B −EJ𝜑K𝜌

EJ𝜑 ×𝜓K𝜌 B EJ𝜑K𝜌 × EJ𝜓K𝜌
EJ𝜑 ÷𝜓K𝜌 B EJ𝜑K𝜌 ÷ EJ𝜓K𝜌
EJ𝜑∧𝜓K𝜌 B (EJ𝜑K𝜌)EJ𝜓K𝜌

21

Introduction to Mathematics in Computer Science Chapter 1: Formal Languages

Compared to our initial definition, there are just two changes. First, we add a rule for variables,

of course. And secondly, we carry the environment 𝜌 around.

< Example 1.31: Evaluating an Arithmetic Expression with Variables

Assume the environment 𝜌 B [𝑥 ↦→ 2, 𝑦 ↦→ 1337, 𝑧 ↦→ 52]. We obtain:

EJ−𝑥 × 5 + 𝑧K𝜌 = EJ((−𝑥) × 5) + 𝑧K𝜌
= EJ(−𝑥) × 5K𝜌 + EJ𝑧K𝜌
= (EJ−𝑥K𝜌 × EJ5K𝜌) + 𝜌 (𝑧)
= ((−EJ𝑥K𝜌) × 5) + 52
= ((−𝜌 (𝑥)) × 5) + 52
= ((−2) × 5) + 52 = −10 + 52 = 42

1.3 Summary

In this chapter, we have learned how to define the syntax and semantics of formal languages.

We have seen BNFs as a short form to specify the syntax and know that an expression has

a tree-like shape. That is why we also speak of syntax trees. We gave precedence rules for

arithmetic expressions such that we can write them in a linearized shape without needing too

many parentheses. We specified the meaning of languages with both operational semantics (or

more precisely big-step semantics) and denotational semantics. When defining the semantics

of programming languages, one often uses operational semantics, but sometimes denotational

semantics are involved as well. Even though we are not about to define a programming language

in this book, we will use BNFs and denotational semantics again, for example when we introduce

propositional logic in the next chapter.

22

2
�� Logic

2.1 Propositional Logic

When asked, which skill is most important for future computer scientists, a common answer is

thinking logically or rationally. That’s what we will look at now.

We start by introducing you to a simple formalism called propositional logic. Propositional logic
studies the logical relationships between propositions, which are a special kind of statement.

Logic is studied and used differently in different disciplines. The original use case of logic in

philosophy is for evaluating (i.e. checking the validity of) arguments. By argument, we do not

mean to denote the act of convincing somebody of a proposition, but rather the actual “spoken

words” said when trying to convince someone. Basically, an argument is a written explanation of

why something is true.

In some sense, logic also guides us towards what we ought to believe. For example, if Kurt believes

both that there will be Schnitzel in Mensa whenever the current day is a Thursday, and he believes

that it is Thursday, we would consider it irrational if he were not to believe that Schnitzel is

served in Mensa today. In general, it is hard to spell out the exact connection between formal

logical inferences and normative consequences arising from these; however, it is uncontroversial

that there is some link between the two.

Lastly, logic is not about how we actually reason, but rather about how we would do so in an

idealized world. We want to obtain correct proofs and not (at least not primarily) explanations

why we reasoned in the wrong fashion.

In a more formal sense, logic allows us to analyze how certain statements are related by conse-

quence, that is, which statements follow from which other statements.

� Chapter Goals

In this chapter, we introduce propositional logic, which is a very basic logic. In particular,

we

• discuss what mathematical statements or propositions are

• define the syntax and semantics of propositional logic

• analyze the reasoning principles of propositional logic

23

Introduction to Mathematics in Computer Science Chapter 2: Logic

Without formal training, it is easy to make mistakes during logical inferences. This is highlighted

by theWason selection task (Checkpoint 2.1), which can quickly assess someone’s logical inference

skills without requiring them to know anything about logic. Interestingly, most people fail the

task.

b Checkpoint 2.1: Wason Selection Task

Consider the following task: Four two-sided cards lay on a table before you, one side of the

cards contains numbers and the other contains letters. Only one side is currently visible to

you. You can see the following:

• The first card has the letter ‘a.’

• The second card has the number 4.

• The third card has the letter ‘z.’

• The fourth card has the number 9.

Imagine a stranger tells you that “The number on a card is even only if the letter on the

other side of the card is a vowel.” Which cards do you need to turn over in order to check

whether that rule is true?

2.1.1 Statements and Propositions

At the core of logic is the analysis of certain statements, so-called propositions.

Definition 2.2 (Proposition). A proposition is a statement which is definitely either true or
false. We say that its truth value is true if the statement is definitely true and that it is false if it
is definitely false.

An important concept for our study is recognizing that propositions come in different forms and

that some propositions are made up of sub-propositions. We now introduce a term for propositions

not containing any sub-statements.

Definition 2.3 (Atomic Proposition). An atomic proposition is a proposition whose truth or
falsity is not dependent on any other proposition. A is the collection of atomic propositions (so we
write 𝑎 ∈ A if 𝑎 is an atomic proposition).

In logic, the only statements we care about are propositions. Thus, we often talk about statements
when we actually mean propositions. The difference between statements and propositions is

rather subtle and discussed in the respective going beyond box.

One particularly important atomic proposition is the proposition that is always true. This propo-

sition is also called truth. Similarly, the proposition that is always false is called falsity.

Note that truth (the proposition) and truth (the opposite of a lie) are not actually the same, even if

they share a name.

2.1.2 Operators

We focus on a specific class, the truth-functional operators. An operator is said to be truth-

functional if the truth values of statements constructed using this operator only depend on the

24

logic:prop:beyond_statement_proposition

Introduction to Mathematics in Computer Science Chapter 2: Logic

Ç Going Beyond: Statement vs. Proposition

For our purposes, it suffices to treat proposition and statement as synonyms. However,

in the philosophy of language, a distinction between them is made: Statements have a

propositional content, so that the term proposition is used to refer to something abstract,

namely the thing that two statements with the same meaning are said to express. Thus, the

sentences Kleene likes Turing and Turing is liked by Kleene express the same propositions,

although as statements they are different.

< Example 2.4: Atomic Propositions

These are all atomic propositions:

• Saarbrücken is in Saarland.

• Saarbrücken is not in the Saarland.

• 0 ≤ 2

• This book has 42 pages.

• The reader’s favorite color is blue.

• 2 + 2 = 5

These are not, since they either not atomic or not propositions:

• Blue is the best color.

• Saarbrücken is beautiful.

• Paris is ugly.

• Saarbrücken is in Saarland and Paris is in

France.

• This statement is false.

truth values of the sub-statements to which the operator is applied.

This concept is probably easier to grasp using an example. We first consider an operator that is

not truth-functional. Consider the unary operator It is possible that 𝜑 . Now consider the sentences

• The official language of Germany is English.

• A bachelor is married.

Obviously, both statements are false, the official language in Germany is German and bachelors

are by definition unmarried men, thus no bachelor is married. But now consider what happens

when we add the modifier:

• It is possible that the official language of Germany is English.

• It is possible that a bachelor is married.

The second sentence is still false since our use of the word bachelor stays the same.
1
However, the

first one is now true (Germany could, at any point, pass a lawmaking English the official language),

which shows that possibility is not truth-preserving—the resulting truth value is different even

though the truth value of the contained statement is the same.

1
The sentence All bachelors are unmarried is a famous example of an analytical proposition—a proposition which is

true by virtue of its meaning.

25

Introduction to Mathematics in Computer Science Chapter 2: Logic

From now on, we limit ourselves to truth-functional operators. Fortunately, almost all logical

operators used in mathematics are truth-functional. The next sections present the most common

ones.

2.1.3 Syntax and Semantics

Without further ado, we present the syntax of propositional logic.

Definition 2.5. The language of propositional logic F0 is defined using the BNF:

F0 ∋ 𝜑,𝜓 F 𝑎 | ⊤ | ⊥ | ¬𝜑 | 𝜑 ∧𝜓 | 𝜑 ∨𝜓 | 𝜑 → 𝜓

where 𝑎 ∈ A, usually denoted as a truth variable.

When working with propositional logic, our atomic propositions are usually represented as truth
variables. This has two purposes: First, it shortens our formulas, since we usually abbreviate

an informally defined proposition like “Saarbrücken is in Saarland” by a single letter, like 𝑠 .

Secondly, it allows us to analyze formulas where we do not really care about the concrete atomic

propositions, to better understand how these operators work in general.

< Example 2.6: Formulas of Propositional Logic

All these are formulas of propositional logic:

• ⊤ ∨ ⊥
• 𝑎 → (¬𝑏)

• 𝑠 ∧ (𝑏 ∨ ⊥)
• ⊥ → ((𝑎 ∧ 𝑏) ∨ ((¬𝑎) ∧ (¬𝑏)))

Their semantics depend on the concrete atomic propositions for 𝑎, 𝑏, and 𝑠 , which we leave

unspecified.

The binary operators are listed such that the strongest binding operator comes first. ∧ and ∨ are

left-associative, and→ is right-associative.

Definition 2.7 (Precedence Rules for Propositional Logic).

Operator Precedence level Associativity
¬ (unary) 3 —
∧ 2 left
∨ 1 left
→ 0 right

Semantics

Let’s look at what these symbols are supposed to mean. All of them are truth-functional operators

we already know from natural language. We first informally describe what these operators are

supposed to mean, and then define a formal semantics.

26

Introduction to Mathematics in Computer Science Chapter 2: Logic

< Example 2.8: Fully Parenthesized Propositional Formulas

If the precedence rules are unclear, the following examples might help.

• 𝑎 ∧ 𝑏 ∧ 𝑐 = (𝑎 ∧ 𝑏) ∧ 𝑐
• 𝑎 ∨ 𝑏 ∧ 𝑐 = 𝑎 ∨ (𝑏 ∧ 𝑐)
• 𝑎 ∧ 𝑏 → 𝑐 ∨ 𝑑 = (𝑎 ∧ 𝑏) → (𝑐 ∨ 𝑑)
• ¬¬𝑎 ∧ 𝑏 = (¬(¬𝑎)) ∧ 𝑏
• 𝑎 → 𝑏 → 𝑐 → 𝑑 = 𝑎 → (𝑏 → (𝑐 → 𝑑))

Before we get to the operators itself, we have ⊤ (read “top,” or “truth”) and ⊥ (read “bottom,”

or “falsity”). ⊤ denotes the atomic proposition that is always true, and ⊥ denotes the atomic

proposition that is always false.

The first is conjunction ∧. It is usually called “and” in informal language, where we read 𝜑 ∧𝜓
as “𝜑 holds and 𝜓 holds.” A conjunction of two statements is true precisely when the left and

right statement are both true. Otherwise, it is false.

The next is disjunction ∨. It is usually called “or.” However, “or” in natural language is often

used ambiguously. If you’re at a logician’s party and are asking the host for “a beer or a coke,” the

host might just bring you a beer and a coke. This is because in propositional logic, 𝜑 ∨𝜓 is true

as long as at least one of the sub-statements is true, i.e. if the left statement, the right statement,

or both of them are true. This is also called inclusive or, to make this precise. There also is

exclusive or, which we will discuss later.

The last binary operator ismaterial implication, written→ and often simply called implication.
In natural language, this roughly corresponds to “if.” In an implication 𝜑 → 𝜓 , we typically call 𝜑

the antecedent (also called precondition), while𝜓 is the consequent. We would read such an

implication as “If 𝜑 , then𝜓 ” or as “𝜓 if 𝜑 .” However, a logician’s conception of implication might

be rather different from the way “if” is used in everyday language. We will explain it later.

Lastly, we have negation ¬𝜑 . Negation in propositional logic denotes the opposite statement,

i.e. the statement is true when the original statement is false. If 𝑎 B “Saarbrücken is in Saarland,”

then ¬𝑎 represents the statement that “Saarbrücken is not in Saarland.”

We now develop a semantics that allows us to formally figure out whether a formula of proposi-

tional logic is true or false. First, we define the two possible truth values:

Definition 2.9 (Truth Values). Truth values are given by the grammar B F true | false.

Basically, when we mean that some formula 𝜑 is true (in some environment), we say that it has

truth value true, and similarly false if it is false.

Now, the truth value of a propositional formula depends on the truth values of the atomic

propositions used in the formula. Since these can be anything, their truth value must be chosen

by us before we start evaluating the truth value of a formula in propositional logic. Formally,

this choice is represented as an environment 𝜌 : A → B, i.e. the environment maps atomic

propositions to truth values.

The formal semantics is now given by an evaluation function.

27

Introduction to Mathematics in Computer Science Chapter 2: Logic

Definition 2.10 (Truth Value Semantics). Given a propositional logic formula 𝜑 , and an envi-
ronment 𝜌 which assigns truth values to truth variables / atomic propositions, the evaluation
BJ𝜑K𝜌 : B of 𝜑 under 𝜌 is defined by structural recursion on 𝜑 :

BJ𝑎K𝜌 = 𝜌 𝑎

BJ⊤K𝜌 = true

BJ⊥K𝜌 = false

The other cases contain sub-expression. There, the evaluation is defined by case analysis on the
evaluation of the sub-expressions, as indicated by the following truth table:

BJ𝜑K𝜌 BJ𝜓K𝜌 BJ𝜑 ∧𝜓K𝜌 BJ𝜑 ∨𝜓K𝜌 BJ𝜑 → 𝜓K𝜌 BJ¬𝜑K𝜌
true true true true true

false
true false false true false

false true false true true
true

false false false false true

So far, we have considered our atomic propositions to be concrete statements, like “Saarbrücken is

in Saarland”. We could now figure out whether 𝑎 → 𝑎 is true, where 𝑎 is that concrete statement.

If we are to understand the laws of logic, this is too limiting. We want to know whether a law like

𝑎 → 𝑎 is always true, irrespective of whatever we chose for 𝑎. This corresponds to enumerating

all possible truth values for all atomic propositions used in our formula. Formally, this means

evaluating a formula under all possible environments. For this, we usually use a proof table, and

then consider all the sub-formulas, evaluating them from the inside out (going up the syntax tree,

starting at the leaves). In practice, we often omit the evaluation brackets J·K− in a truth table,

especially if the environment is clear from the context or defined by the truth table itself, like in

Example 2.11.

< Example 2.11: Truth Tables

We evaluate the formula 𝑎 ∧ ¬𝑏 → 𝑐 ∧ ⊤ under all possible environments:

𝑎 𝑏 𝑐 ¬𝑏 𝑎 ∧ ¬𝑏 ⊤ 𝑐 ∧ ⊤ 𝑎 ∧ ¬𝑏 → 𝑐 ∧ ⊤
false false false true false true false true

false false true true false true true true

false true false false false true false true

false true true false false true true true

true false false true true true false false

true false true true true true true true

true true false false false true false true

true true true false false true true true

If we now consider a concrete environment 𝜌 B [𝑎 ↦→ true, 𝑏 ↦→ false, 𝑐 ↦→ false], we
can immediately read that J𝑎 ∧ ¬𝑏 → 𝑐 ∧ ⊤K𝜌 = false by looking at the correct line in

our truth table.

28

Introduction to Mathematics in Computer Science Chapter 2: Logic

Often, we care not just about whether a formula is true in some environment or another, but about

its behavior in all possible environments. For example, ⊤ is true in all environments. Similarly, ⊥
is false in all environments. Yet, 𝑎 ∧𝑏 is true in some environments and false in others. To classify

these cases, we have the following definitions.

Definition 2.12 (Validity, Satisfiability). A formula 𝜑 ∈ F0 is called

• valid iff it evaluates to true under all possible environments.

• satisfiable iff it evaluates to true under at least one environment.

• contradictory iff it evaluates to false under all possible environments.

• refutable iff it evaluates to false under at least one environment.

Thus, the formula ⊤ is valid. Note that it is also satisfiable. Similarly, ⊥ is contradictory. Both it

and 𝜑 ∧ ¬𝜑 are refutable.

For now, we define that a formula is true iff it is valid. We can figure out whether a formula

is true by just enumerating all possible environments and checking that its truth value is true
under all of them. Note that this can be very time-consuming, especially for formulas using many

variables. For example, the formula 𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑 ≡ 𝑑 ∧ 𝑐 ∧ 𝑏 ∧ 𝑎 is obviously true, but a truth

table would take 16 rows and 12 columns.

b Checkpoint 2.13: Validity, Satisfiability

We can see in Example 2.11 that the formula 𝑎 ∧ ¬𝑏 → 𝑐 ∧ ⊤ is satisfiable and refutable.

Similarly determine whether the following formulas are valid, satisfiable, contradictory, or

refutable. Compute the truth table in all cases.

• 𝑎 ∧ ¬𝑎
• 𝑎 ∨ ¬𝑎
• 𝑎 ∧ 𝑏 → 𝑏 ∧ 𝑎

• ¬𝑎 → 𝑎

• ¬¬𝑎 → 𝑎

• ¬𝑎 → 𝑎 → ⊥

2.1.4 Implication and Equivalence

So far, we have delayed an intuitive explanation of how (material) implication works. We will

tackle this now.

First, note that implication, as defined inDefinition 2.10, is a truth-functional operator. In colloquial

speech, a statement like “If I fall down the stairs, I get hurt” implies a deep causal relation between

falling and getting hurt. An implication like “If my sister falls down the stairs, I get hurt” seems

nonsensical, since it’s supposed to be the sister that gets hurt. However, implication needs to be

truth-functional, which means that we can not capture any deeper connections between actions.

Thus, if both me and my sister fall down the stairs, and I get hurt, both implications should have

the same truth value since all sub-expressions have the same truth value. We now construct the

operator that best resembles our intuitive understanding of “if this, then that.”

29

Introduction to Mathematics in Computer Science Chapter 2: Logic

Let’s say that your logician friend Dieter tells you: “On Monday mornings, I am very tired.” Since

Dieter is a logician, he rather phrases it like this: “If it is a Monday morning, I am very tired.”

Let’s try to analyze what Dieter is actually telling us.

If it actually is a Monday morning, then Dieter should actually be very tired. If Dieter is well

awake on such a morning, we would consider his statement a lie. Since Dieter is a good friend

who never lies, we know that what he tells us is always true. So, if we have an implication we

know is true, and we know that the antecedent (It is a Monday morning) holds, then we can

conclude that the consequent also holds. So far, this is expected.

Let’s repeat our scenario on any other day of the week. Note that now, we can no longer conclude

whether Dieter is tired or fully awake. Dieter could be rather tired on all mornings, irrespective

of the day of the week. Alternatively, Dieter could just hate Mondays. His statement does not

allow us to draw any conclusions about his mental state on Tuesdays, since he only talked about

Mondays.

Looking at the formalism, this tells us that an implication can be true, even if the antecedent is

wrong. In fact, if the antecedent is wrong, the implication must always be true. Let’s make this

explicit by considering alternative definitions of implication (denoted as

1−→ to

3−→):

𝜑 𝜓 𝜑 → 𝜓 𝜑
1−→ 𝜓 𝜑

2−→ 𝜓 𝜑
3−→ 𝜓

true true true true true true

true false false false false false

false true true false true false

false false true true false false

If implication was defined like

1−→, then we would also know that if Dieter was very tired, it would

be a Monday morning. This is clearly not what Dieter said,
2
since Dieter can also be tired on

other days of the week.

If we would instead use the implication

2−→, then we would know that Dieter is tired on all days.

Again, this is not what Dieter meant—he simply meant to tell us that he is tired on Mondays, and

did not tell us anything at all about the other days of the week.

Finally, candidate

3−→ would force us to deduce that Dieter is tired and that it is always a Monday

morning. This is plainly absurd since there are other days in the week. Note that candidate 3 is

just conjunction.

In summary, implication should be understood through the lens of If we know 𝜑 → 𝜓 is true, what
do we know about𝜓 depending on 𝜑? In other words, try to understand implication by considering

how it can be used to deduce other facts.

With this, we can turn to two alternative terms often used to describe implications:

Definition 2.14 (Sufficient and Necessary Conditions). In an implication 𝜑 → 𝜓 , we say that

• 𝜑 is sufficient for𝜓

• 𝜓 is necessary for 𝜑
2
It can also not be what Dieter meant. Dieter is a logician and always says precisely what he means.

30

Introduction to Mathematics in Computer Science Chapter 2: Logic

Again consider our friend Dieter, who is very tired if it is a Monday morning.

There, it being a Monday morning is sufficient for Dieter to be tired. This is because once we

know that it is a Monday morning, we can simply conclude that Dieter is tired. Nothing more

needs to be checked, our current knowledge about Dieter and the world is enough—it is sufficient.

Conversely, if we know that Dieter is tired, we can of course not conclude that it is a Monday.

However, it is still possible that it indeed is a Monday. If Dieter had instead woken up well-rested,

we would already know that today can not be a Monday. Thus, Dieter being tired is necessary for

it to be a Monday since we could otherwise just summarily reject this possibility.

Note that these statements appear “backwards,” since they make it seem like it can not be a

Monday because Dieter is awake, while in reality, Dieter does not have the magic ability to change

the day of the week. However, if you know how to spot it, you can notice that we use reasoning

like this all the time. For example, Dieter sometimes wakes up in the middle of the night. At first,

he is shocked since him waking up on his own, without an alarm, usually means that he overslept.

However, once he sees that it’s still dark outside, Dieter is relieved. This is because Dieter knows

that if he oversleeps, the sun would already have risen. Thus, he can do the same “backwards

inference” to realize that he did not oversleep, without even looking at his alarm clock. All of this

works precisely because the sun rising is necessary for Dieter to oversleep.

To make things even more confusing, a backwards “if” is often called “only if.” Thus, an expression

like “𝑎 only if 𝑏” is to be parsed as 𝑏 → 𝑎. Usually, this is used when the “backwards inference”

aspect of the implication is stressed. In practice, it often negatively affects clarity and should be

avoided.

Equivalence Out of the “wrong implications,” candidate 1 was the most interesting: It allowed

us to express that something is true exactly when something else is true. Since this is very useful,

it has a special name and a special symbol:

Definition 2.15 (Material Equivalence). Two formulas 𝜑,𝜓 ∈ F0 are equivalent, written 𝜑 ↔ 𝜓 ,
precisely when

(𝜑 → 𝜓) ∧ (𝜓 → 𝜑)

This kind of equivalence based on material implication is also known asmaterial equivalence.

Note that the truth table induced by this operation is precisely that of

1−→.

The formula 𝜑 ↔ 𝜓 can be read as “𝜑 and𝜓 are equivalent,” although this is rather uncommon.

Instead, we usually say that “𝜑 if and only if𝜓” since this captures that either implies the other.

On paper, this is often abbreviated to “iff,” which should not be confused with “if.”

You might have come across “iff” in several definitions already. When defining some property or

statement that is true or false, we usually express this using “iff,” following a schema similar to

this:

A day 𝑑 is called a working day iff it is Monday, Tuesday, Wednesday, Thursday or Friday.

Material equivalence is an operator in propositional logic, defined using syntactic sugar. It allows

us to reason about the equivalence of two statements within the framework of propositional logic.

Opposite to this, there is the meta-level notion of semantic equivalence:

31

Introduction to Mathematics in Computer Science Chapter 2: Logic

Definition 2.16 (Semantic Equivalence). Two formulas 𝜑,𝜓 ∈ F0 are semantically equivalent
written 𝜑 ≡ 𝜓 , iff for all possible environments 𝜌 , J𝜑K𝜌 = J𝜓K𝜌 .

This is a meta-level definition, since it is defined by referencing concepts needed to define

propositional logic itself (namely evaluation), instead of being defined within propositional logic.

More on the difference between the object- and meta-level can be found in the respective going

beyond box.

Ç Going Beyond: Object- and Meta-Level Logics

When doing logic, one has to distinguish between object- and meta-level logics. You

already know this distinction from the first chapter, where we had the object- and the

meta-language. Let’s have a closer look at why we need this distinction, and what we gain

by having two different levels of logic.

For reference, object level logic is the logic one is currently studying. Here, it is proposi-

tional logic. Meta-level logic is what we use to describe how the object-level logic works.

In this book, it is English, along with a colloquial understanding of words like “and” or “if

and only if.”

In the meta-level logic, we are often able to express things we can not express in the object-

level logic. For example, in plain propositional logic, we have no notion of environments,

the collection of all formulas, and so on. However, we have a very precise understanding

of implication.

We study special object-level logics to better understand how to think about mathematics at

the meta-level. For example, we now better understand what logicians and mathematicians

mean when they say “if and only if”—namely something corresponding to the material

equivalence of propositional logic.

While→ and↔ belong to the object level, we can use⇒ and⇔ to express the correspond-

ing concept in the meta-level. By this, we make explicit that the meta-level concept of “If,

then” or “If and only if” works like implication and material equivalence in propositional

logic.

For example, the formula 𝑎 ↔ 𝑏 is satisfiable, which means that there is at least one environment

for which 𝑎 and 𝑏 both imply each other. However, there can be other environments where

this does not hold. If they were semantically equivalent, they would be equivalent in every

environment, which they clearly are not.

Semantic and material equivalence have a rather deep connection:

Theorem 2.17. Given any two formulas 𝜑,𝜓 ∈ F0, we have that 𝜑 ↔ 𝜓 is valid if and only if
𝜑 ≡ 𝜓 .

Proof. We prove a meta-level implication by proving both directions separately.

⇒ We know 𝜑 ↔ 𝜓 is valid in all environments, and need to show that for any environment 𝜌 ,

J𝜑K𝜌 = J𝜓K𝜌 . This holds since J𝜑K𝜌 and J𝜓K𝜌 are either both true or both false in 𝜌 , since

the equivalence is also true in 𝜌 .

⇐ Since 𝜑 and 𝜓 both evaluate to the same value 𝑏 in 𝜌 , the equivalence 𝜑 ↔ 𝜓 must also

hold in 𝜌 . □

32

logic:prop:beyond_object_meta
logic:prop:beyond_object_meta

Introduction to Mathematics in Computer Science Chapter 2: Logic

This means that two formulas 𝜑,𝜓 are semantically equivalent if the formula 𝜑 ↔ 𝜓 is true

(unconditionally).

Similarly, we can characterize validity using semantic equivalence.

Lemma 2.18. A formula 𝜑 ∈ F0 is valid (or true) iff 𝜑 ≡ ⊤. Similarly, it is contradictory iff 𝜑 ≡ ⊥.

This means that we can prove that a formula is true by just proving that it is semantically

equivalent to ⊤. In some cases, this might be easier than drawing the entire proof table.

Exclusive Or Consider the truth table for the negation of material equivalence:

𝜑 𝜓 𝜑 ↔ 𝜓 ¬(𝜑 ↔ 𝜓)
true true true false

true false false true

false true false true

false false true false

This operator also has a special name: exclusive or. This is in contrast to the usual disjunction,

which is inclusive. For historical reasons, it is usually not defined via material equivalence, but

like this:

Definition 2.19 (Exclusive Or). The exclusive or of two formulas 𝜑 ,𝜓 , also written as 𝜑 ⊕𝜓 , is
defined as follows.

𝜑 ⊕𝜓 := (𝜑 ∧ ¬𝜓) ∨ (¬𝜑 ∧𝜓)

When “or” is used colloquially, it can often have a meaning that is closer to exclusive or than to

inclusive or. Thus, when trying to model certain logical connections, one needs to carefully think

about which variant is actually meant.

2.1.5 Laws

In the last section, we developed equivalence ≡.
A very important property of equivalence is that it is substitutive.

Lemma 2.20 (Substitution with Equivalence). Given two equivalent formulas 𝜑 ≡ 𝜓 . If, in some
third formula 𝜒 , we replace an occurrence of 𝜑 with𝜓 to get a new formula 𝜒 ′, then 𝜒 ≡ 𝜒 ′.

In general, ≡ can be used similar to how equality = can be used. We discuss the principles allowing

us to do this in Section 3.2.2.

For example, it is easy to see that 𝑎 ∧ 𝑏 ≡ 𝑏 ∧ 𝑎. This then allows us to also conclude that

𝑎 ∧ 𝑏 → 𝑐 ≡ 𝑏 ∧ 𝑎 → 𝑐 , since we can replace the 𝑎 ∧ 𝑏 by 𝑏 ∧ 𝑎 while preserving equivalence.

This kind of replacement is called rewriting – we say that we rewrite with the equivalence

𝑎 ∧ 𝑏 ≡ 𝑏 ∧ 𝑎. Note that rewriting works both ways: we could also replace 𝑏 ∧ 𝑎 by 𝑎 ∧ 𝑏.
Together with Lemma 2.18, this gives us a way for proving that a formula is true, which does not

involve truth tables. If we want to prove for example 𝑎 ∧𝑏 ∧ 𝑐 → 𝑐 ∧𝑏 ∧ 𝑎, we can show that this

33

Introduction to Mathematics in Computer Science Chapter 2: Logic

is equivalent to ⊤. To do so, we can repeatedly rewrite using certain equivalences we already

know to be true, like 𝜑 ∧𝜓 ≡ 𝜓 ∧ 𝜑 or 𝜑 → 𝜑 ≡ ⊤, to eventually arrive at ⊤.
For this, we need a rather large library of “well-known equivalences.” Such properties are also

called laws. Since our laws are systems of equations used for rewriting, we also call them

algebraic. These laws can later be used in proofs. we can also look at them to better understand

how our operators from propositional logic actually work.

Ç Going Beyond: Algebra

The word “algebra” has many meanings in mathematics, usually related to equational

reasoning.

One of them is that anything that has some notion of equality (like ≡), a collection of

operators (like ∧,→, . . .), and a collection of fundamental equalities (like 𝜑 ∧𝜓 ≡ 𝜓 ∧𝜑) is
called an algebraic structure.

Our running example 𝜑 ∧ 𝜓 ≡ 𝜓 ∧ 𝜑 expresses a property called commutativity. Intuitively,
an operator is commutative if we can swap its arguments. The same property also holds for

disjunction, but not for implication. Here is a collection of some of the most useful laws of

propositional logic:

Lemma 2.21 (Algebraic Laws of Propositional Logic).

Commutativity
𝜑 ∧𝜓 ≡ 𝜓 ∧ 𝜑
𝜑 ∨𝜓 ≡ 𝜓 ∨ 𝜑

Associativity
(𝜑 ∧𝜓) ∧ 𝜒 ≡ 𝜑 ∧ (𝜓 ∧ 𝜒)
(𝜑 ∨𝜓) ∨ 𝜒 ≡ 𝜑 ∨ (𝜓 ∨ 𝜒)

Distributivity
(𝜑 ∧𝜓) ∨ 𝜒 ≡ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)
(𝜑 ∨𝜓) ∧ 𝜒 ≡ (𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)

Absorption
𝜑 ∧ (𝜑 ∨𝜓) ≡ 𝜑
𝜑 ∨ (𝜑 ∧𝜓) ≡ 𝜑

Idempotence
𝜑 ∧ 𝜑 ≡ 𝜑
𝜑 ∨ 𝜑 ≡ 𝜑

Complement
𝜑 ∨ ¬𝜑 ≡ ⊤
𝜑 ∧ ¬𝜑 ≡ ⊥

Identity
𝜑 ∧ ⊤ ≡ 𝜑
𝜑 ∨ ⊥ ≡ 𝜑
⊤ → 𝜑 ≡ 𝜑

Definability
𝜑 → 𝜓 ≡ 𝜓 ∨ ¬𝜑
¬𝜑 ≡ 𝜑 → ⊥

Double negation
¬¬𝜑 ≡ 𝜑

Contraposition
𝜑 → 𝜓 ≡ ¬𝜓 → ¬𝜑

Domination
𝜑 ∧ ⊥ ≡ ⊥
𝜑 ∨ ⊤ ≡ ⊤
𝜑 → ⊤ ≡ ⊤
⊥ → 𝜑 ≡ ⊤

De Morgan’s laws
¬(𝜑 ∧𝜓) ≡ ¬𝜑 ∨ ¬𝜓
¬(𝜑 ∨𝜓) ≡ ¬𝜑 ∧ ¬𝜓
¬⊤ ≡ ⊥
¬⊥ ≡ ⊤

34

Introduction to Mathematics in Computer Science Chapter 2: Logic

Proof. Every law can be shown correct by doing a proof table and noting that both sides are

equivalent. Here is one such table, for the first absorption law:

𝜑 𝜓 𝜑 ∨𝜓 𝜑 ∧ (𝜑 ∨𝜓)
true true true true

true false true true

false true true false

false false false false

As we can see, the rows for 𝜑 and for 𝜑 ∧ (𝜑 ∨𝜓) have the same truth values, hence both formulas

are semantically equivalent. □

We can now use those laws to prove other laws. For example, we could also have proven

Contraposition by using some of the other laws.
3
A proof of Contraposition might look like this:

𝜑 → 𝜓 ≡ ¬𝜑 ∨𝜓 Definability

≡ 𝜓 ∨ ¬𝜑 Commutativity

≡ ¬¬𝜓 ∨ ¬𝜑 Double Negation

≡ ¬𝜓 → ¬𝜑 Definability

Similarly, we can prove domination:

𝜑 ∧ ⊥ ≡ 𝜑 ∧ (𝜑 ∧ ¬𝜑) Complement

≡ 𝜑 ∧ 𝜑 ∧ ¬𝜑 Associativity

≡ 𝜑 ∧ ¬𝜑 Idempotence

≡ ⊥ Complement

Our laws here have a very special property. They together are strong enough that every valid

equivalence in propositional logic can be proven using just those laws. In fact, as we’ve seen

above, we do not even need all of these laws. We just need some of the categories.

Theorem 2.22 (Completeness). The following laws can prove all equivalences in propositional logic.

• Commutativity

• Associativity

• Distributivity

• Absorption

• Idempotence

• Complement

• Identity (for ∧,∨)

• Definability of→

Try thinking about how you would prove the other laws from the laws of Theorem 2.22. For

some laws, this is rather straightforward. For other laws, these proofs were very hard to discover,

because they are very long and not at all obvious. Nonetheless, they exist.

3
Note that in general, if we prove one law using another, we have to be careful to not also prove that other law

using the first, or we have not actually proven anything since such a proof is circular.

35

Introduction to Mathematics in Computer Science Chapter 2: Logic

The general property of being able to prove all true statements of some kind using just a few laws

is called completeness. Here, it means that all of propositional logic is described by just those

few laws. It tells us that there is “nothing more” to propositional logic than the facts described by

these laws.

� Important Individual: George Boole

George Boole (1815-1864) was an English mathematician and logician.

His work “The Laws of Thought” established the algebraic laws of

predicate logic, which was named Boolean algebra in honor of his

name. The truth values B are often called booleans, also in honor

of his name. He also came up with notions for quantifiers, and for

multi-variate relations.

In 1864, George Boole walked to his university to give a lecture while

it was raining heavily. He gave his lecture in wet clothes and fell ill

with fever. He succumbed to his illness a few days later.

Let’s say we wanted to prove all the other laws using just those few laws. In order to attempt this,

it is useful to first prove some intermediate facts, which make proving other laws simpler later

on. One of those lemmas is the following, which characterizes negation by giving two properties

that, when fulfilled, say that a formula behaves exactly like the negation of some other formula.

Lemma 2.23. Given 𝜑,𝜓 such that 𝜑 ∧𝜓 ≡ ⊥ and 𝜑 ∨𝜓 ≡ ⊤, then𝜓 ≡ ¬𝜑 .

Proof. We prove that 𝜑 ≡ ¬𝜓 , while using the two assumptions at certain rewrite steps.

𝜓 ≡ 𝜓 ∨ ⊥ Identity

≡ 𝜓 ∨ (𝜑 ∧ ¬𝜑) Complement

≡ (𝜓 ∨ 𝜑) ∧ (𝜓 ∨ ¬𝜑) Distributivity

≡ (𝜑 ∨𝜓) ∧ (𝜓 ∨ ¬𝜑) Commutativity

≡ ⊤ ∧ (𝜓 ∨ ¬𝜑) Assumption

≡ (𝜓 ∨ ¬𝜑) ∧ ⊤ Commutativity

≡ (¬𝜑 ∨𝜓) ∧ ⊤ Commutativity

≡ (¬𝜑 ∨𝜓) ∧ (𝜑 ∨ ¬𝜑) Complement

≡ (¬𝜑 ∨𝜓) ∧ (¬𝜑 ∨ 𝜑) Commutativity

≡ ¬𝜑 ∨ (𝜓 ∧ 𝜑) Distributivity

≡ ¬𝜑 ∨ (𝜑 ∧𝜓) Commutativity

≡ ¬𝜑 ∨ ⊥ Assumption

≡ ¬𝜑 Identity

□

This theorem tells us that negation is completely defined by these two properties. Any formula

that also satisfies these properties, which are based on the identity laws, works exactly the same

way negation does. This not only tells us a lot about negation, but it also can help us when

we want to prove that two formulas are equivalent, since we can use the lemma to show that

36

Introduction to Mathematics in Computer Science Chapter 2: Logic

one formula is equivalent to another’s negation by just proving that the first formula fulfills the

identity laws.

The complement laws also warrant a closer look. The first law states that 𝜑 ∨ ¬𝜑 is valid. This is

also known as the Law of Excluded Middle, which states that everything is either true or false.

This law has quite a few names: it is also known as tertium non datur (Latin for “a third [truth

value] is not given”). The second law states that 𝜑 ∧ ¬𝜑 never holds. This is known as the Law
of Non-Contradiction and simply says that nothing is ever both true and false.

� Important Individual: Plato

Plato was an ancient Greek philosopher, active during the 5th and 4th

centuries BC. He, along with his teacher Socrates, are often considered

the founders of Western philosophy, which they impact until this day.

Plato first explicitly used the law of non-contradiction and the law of

excluded middle in his works. He also founded the first university, and

heavily impacted later philosophers like Aristotle or Euclid. Today he

is mostly known for his cave allegory, as well as for being namesake to

a number of concepts like the Platonic solids or platonic relationships.

b Checkpoint 2.24: Proofs Using Algebraic Rules

Prove the following laws using just the laws from Theorem 2.22.

• Domination: 𝜑 ∨ ⊤ ≡ ⊤
• De Morgan: ¬(𝜑 ∨𝜓) ≡ ¬𝜑 ∧ ¬𝜓
• Double Negation: ¬¬𝜑 ≡ 𝜑
Hint: Use Lemma 2.23 and results from the prior parts of the exercise!

Finally, here is another very interesting property of propositional logic.

Definition 2.25. For a formula 𝜑 of propositional logic without implication, we can create its
dual formula dual(𝜑) by replacing

• ⊤ with ⊥

• ⊥ with ⊤

• ∧ with ∨

• ∨ with ∧.

Lemma 2.26 (Duality). Let 𝜑,𝜓 be formulas in propositional logic (without implication) such that
𝜑 ≡ 𝜓 . Then dual(𝜑) ≡ dual(𝜓).

Proof. By Theorem 2.22, we can prove the original equivalence 𝜑 ≡ 𝜓 by rewriting with certain

laws of propositional logic. Now, we prove dual(𝜑) ≡ dual(𝜓) by taking the exact same rewrite

steps, except that we apply the dual law every time. For that, it simply needs to hold that the

dual of every law used during rewriting is also a law. But this is obvious by simply looking at the

laws used in Theorem 2.22 and seeing that the two laws in each category are their respective dual

statements. □

37

Introduction to Mathematics in Computer Science Chapter 2: Logic

The duality lemma allows us to immediately see that if we have for example (𝑎∧𝑏 ∧𝑎) ∨¬𝑎∨𝑏 ≡
¬𝑎 ∨ 𝑏, then also (𝑎 ∨ 𝑏 ∨ 𝑎) ∧ ¬𝑎 ∧ 𝑏 ≡ ¬𝑎 ∧ 𝑏.

b Checkpoint 2.27: Pitfalls with Duality

What is the problem with the following proof?

Proof that ⊤ ≡ ⊥.
Let’s say that we manage to prove that ⊤ ≡ 𝜑 for some 𝜑 . Then by duality, also ⊥ ≡ 𝜑 . We

would then have ⊤ ≡ 𝜑 ≡ ⊥.
Since such a 𝜑 is very easy to find, we have ⊤ ≡ ⊥. □

38

Introduction to Mathematics in Computer Science Chapter 2: Logic

2.2 First-Order Logic

So far, we have seen that we can use propositional logic to formally describe basic statements. We

have also seen a way of figuring out whether a statement is valid, or true, by using a proof table.

Sadly, propositional logic is not strong enough to even attempt doing regular mathematics with it.

To see why, let us consider a usual mathematical statement:

For all rational numbers 𝑎, 𝑏, if 𝑎 < 𝑏, then there is a number 𝑐 such that 𝑎 < 𝑐 and 𝑐 < 𝑏.

If we tried to formalize this in propositional logic, we might try to come up with the following

statement, where the parts in quotations represent atomic propositions:

“𝑎 < 𝑏”→ (“𝑎 < 𝑐” ∧ “𝑐 < 𝑏”)

This, however, is unsatisfactory: The original statement we wanted to formalize said a lot more

than our attempt above. Our new formula is, in fact, nonsensical since we can not understand it

without knowing what 𝑎, 𝑏 and 𝑐 are. Originally, we had that 𝑎 and 𝑏 could be arbitrary numbers,

and that 𝑐 was a special number which somehow depended on 𝑎 and 𝑏.

To solve this issue, we will strengthen our logic by allowing it to talk about objects. Instead of

atomic propositions, we now have predicates. A predicate is a statement about objects, like

“𝑥 loves 𝑦” for variable 𝑥,𝑦. We add predicates and object variables to our logic, so that we can

express such predicates that relate several objects, while allowing us to study what happens when

we change the specific objects being related. We further add logical connectives ∀ and ∃, which
allows us to express that something is true for all objects, or for at least one, respectively. This

fundamentally changes our logic, so we give it a new name: first-order logic. The above statement

can then be represented by the following first-order formula:

∀𝑎, 𝑏 : 𝑎 < 𝑏 → ∃𝑐 : 𝑎 < 𝑐 ∧ 𝑐 < 𝑏

� Chapter Goals

In this chapter, we develop first-order logic, a logic which can talk about objects. This

includes

• The syntax of first-order logic

• A notion of truth for first-order logic

• Discussing scoping, binding and variables

• Discussing how first-order logic is used to do useful mathematics

2.2.1 Syntax

To define first-order logic formally, we extend propositional logic with variables and means to

introduce them. This means that variables for objects now become part of our syntax, and different

kinds of variables will be required in different places. This is not uncommon in mathematics. The

usual way to discriminate between different kinds of variables is by choosing them from different

alphabets. We follow this convention and use the following schema:

39

Introduction to Mathematics in Computer Science Chapter 2: Logic

• Predicate symbols: 𝑃,𝑄, 𝑅, . . . Predicate symbols, also called predicate variables, are

uppercase characters. These variables work similarly to the atomic statements we know

from propositional logic, except they can now refer to objects. For example, in the statement

“For all 𝑥 , 𝑃 (𝑥),” 𝑃 is a predicate variable.

• Object variables: 𝑥,𝑦, 𝑧, . . . The variables are lowercase characters and are used as part of

the syntax of first-order logic. For example, in the statement “For all 𝑥 , 𝑃 (𝑥),” 𝑥 is an object

variable.

• Meta-variables: 𝜑,𝜓, . . . These variables are lowercase Greek letters. We have seen these

before.

The syntax of first-order formulas can now be specified by a BNF:

Definition 2.28 (Syntax of First-Order Formulas). In the following, 𝑥 is a stand-in for any
object variable, and 𝑃 is for any predicate symbol.

F1 ∋ 𝜑,𝜓 F ¬𝜑
| 𝜑 ∧𝜓
| 𝜑 ∨ 𝜙
| 𝜑 → 𝜓

| ∀𝑥 : 𝜑

| ∃𝑥 : 𝜑

| 𝑃 (𝑥1, . . . , 𝑥𝑛) 𝑛 ∈ N

Most of the syntax is already known from propositional logic. There are two new logical connec-

tives, namely ∀ and ∃, as well as the case for predicates, which we will look at first.

Predicates relate several objects. There are many examples for predicates:

• prime(𝑥), the predicate describing that something is a prime number.

• 𝑥 = 𝑦, the predicate describing that two objects are the same. Note that 𝑥 = 𝑦 is just

syntactic sugar for =(𝑥,𝑦).

• 𝑥 > 𝑦, the predicate describing that a number is greater than some other number. Similarly,

this is just syntactic sugar for <(𝑦, 𝑥).

• married (𝑥,𝑦), the predicate describing that 𝑥 and 𝑦 are married. If we wanted syntactic

sugar, we might write this as 𝑥 𝑦.

The way formula constructed from a predicate is read out loud is usually dependent on the

predicate. For example, prime(𝑥) is usually read as “𝑥 is prime” or “𝑥 is a prime number.” 𝑥 = 𝑦 is

read as “𝑥 is equal to 𝑦” or simply “𝑥 equals 𝑦,” as expected.

Note that every predicate only talks about a fixed number of objects. prime only describes a single
number, while = relates two numbers.

We call the number of objects the predicate talks about its arity. Hence, prime is a predicate of
arity 1, and = is a predicate of arity 2, and so on. The rule for predicates – 𝑃 (𝑥1, . . . , 𝑥𝑛) – allows

40

Introduction to Mathematics in Computer Science Chapter 2: Logic

us to apply any predicate to any number of variables. Since our formulas only make sense if the

number of variables there is exactly the arity of that predicate, we require that the rule is only

used like this. It is also possible to have a predicate which takes no variables at all, by setting

its arity as 0. This is important because it allows us to express ⊤ and ⊥ in our logic: by having

⊤() and ⊥() as predicates of arity 0. While these two examples are the most obvious, it can be

useful to have other atomic predicates of arity 0, since this allows us to translate every formula of

propositional logic into first-order logic. When building formulas, we also have to specify the

concrete predicates we plan to use. This is called the signature of our formulas.

Next, we have∀ and ∃, which are called quantifiers. We call∀ the forall-quantifier or universal
quantifier, while∃ is the existential quantifier. These quantifiers allow us to express statements

holding for all or for some objects.

While the symbols for quantifiers may seem strange, they become familiar once we understand

how they are to be read:

• A formula like ∀𝑥 : 𝜑 is read as “for all 𝑥 , 𝜑 holds,” or as “for every 𝑥 , 𝜑 ,” for example. Thus,

a formula like ∀𝑥 : 𝑥 = 𝑥 , is read as “for all 𝑥 , 𝑥 is equal to 𝑥 .” If we wanted to be creative,

we could also say “All 𝑥 are equal to themselves.”

• A formula like ∃𝑥 : 𝜑 is read as “there is 𝑥 such that 𝜑 ,” or as “there exists an 𝑥 for which 𝜑

holds,” for example. Hence, a formula like ∃𝑥 : prime(𝑥) can be read as “there is an 𝑥 such

that 𝑥 is prime,” or as “there is a prime number” if one wants to be creative.

We have not yet defined a formal semantics for first-order logic, but based on the above intuition,

you can deduce what is meant by the various connectives.

< Example 2.29: First-Order Formulas

All of these are first-order formulas:

• ⊤ → ⊥
• ∀𝑥 : (𝑃 (𝑥) → (∃𝑦 : 𝑅(𝑥,𝑦)))
• ∀𝑥 : ⊤
• ∀𝑥 : (∀𝑦 : 𝑃 (𝑥))

• 𝑃 ()
• ∀𝑥 : (∀𝑦 : (𝑃 (𝑥,𝑦) → 𝑃 (𝑦, 𝑥)))
• ∀𝑥 : (∃𝑥 : (∀𝑥 : 𝑃 (𝑥, 𝑥, 𝑥)))
• ∃𝑦 : ⊥

First-order logic is usually abbreviated as FOL. Sometimes, it is also called predicate logic. The
symbol for first-order formulas F1 thus has a 1 as subscript. Propositional logic had the symbol

F0, and is sometimes called zeroth-order logic, like when comparing it to first-order logic.

Precedence Rules for First-Order Logic

The operator precedence for first-order logic follows that of propositional logic. We have the

following precedence rules, from strongest to weakest:

1. 𝑃𝑛 (𝑥1, . . . , 𝑥𝑛): predicates bind strongest. This is unsurprising since they do not have

subformulas.

41

Introduction to Mathematics in Computer Science Chapter 2: Logic

Ç Going Beyond: Higher-Order Logics

As the name “first-order” logic suggests, there also are higher-order logics. The difference
is that in first-order logic, quantifiers only quantify over objects. In second-order logic,

quantifiers also quantify over predicates. There, we can have statements like ∀𝑃 : 𝑃 ∨ ¬𝑃 .
This would then mean that all propositions 𝑃 are either true or false, i.e. the law of excluded

middle. Such logics also allow quantifying over all predicates, so that the following would

be valid: ∃𝑃 : 𝑃 (0) ∧ ∀𝑛 : 𝑃 (𝑛) ↔ ¬𝑃 (𝑛 + 1). The formula is valid since the searched

predicate 𝑃 (𝑥) is precisely even(𝑥). Third-order logic would then allow quantifying over

all properties of such predicates, and so on. In the end, we reach infinite-order logic, where

we can do all of these quantifications all at once.

In this chapter, we focus on first-order logic. In later chapters, wewill see some higher-order

constructs. By then, this will feel very natural.

Ç Going Beyond: History of First-Order Logic

You might have noticed that there is no important individual responsible for the develop-

ment of first-order logic. This is because first-order logic emerged gradually, and many

people made significant contributions to it, like Boole, Frege, Russel, Whitehead, Löwen-

heim, Hilbert, Gödel and many others. Modern formal logic got started in the 1800s, and it

took until the 1930s for first-order logic to be recognized as a distinct concept. A detailed

account of its development can be found at this website:

https://plato.stanford.edu/entries/logic-firstorder-emergence

2. ¬𝜑 : Like before, negation is the next-strongest connective. Multiple negation operators do

not require brackets (i.e. ¬¬𝜑 is valid syntax).

3. 𝜑 ∧𝜓 : left-associative, following the rules of propositional logic.

4. 𝜑 ∨𝜓 : left-associative, following the rules of propositional logic

5. 𝜑 → 𝜓 : right-associative, still following the rules of propositional logic.

6. ∀𝑥 : 𝜑 and ∃𝑥 : 𝜑 . These bind the weakest. This means that quantifiers always try to bind

the largest possible subformula. Like with negation, when we put multiple quantifiers

behind each other, we do not need brackets (i.e. ∀𝑥 : ∃𝑦 : 𝜑 is valid).

Thus, the following formulas are the same:

• ∀𝑥 : ∀𝑦 : 𝑥 = 𝑦 → 𝑦 = 𝑥 and ∀𝑥 : (∀𝑦 : ((𝑥 = 𝑦) → (𝑦 = 𝑥)))

• ∀𝑥 : (∃𝑦 : 𝑃 (𝑦)) → 𝑃 (𝑥) ∧𝑄 (𝑥) and ∀𝑥 : ((∃𝑦 : (𝑃 (𝑦))) → ((𝑃 (𝑥)) ∧ (𝑄 (𝑥))))

Variables and Scopes

The reason we introduced quantifiers was to allow us to make statements about objects. The

quantifiers then tell us which objects these statements refer to (namely “all” or “some”). Yet, our

42

https://plato.stanford.edu/entries/logic-firstorder-emergence

Introduction to Mathematics in Computer Science Chapter 2: Logic

b Checkpoint 2.30: First-Order Formulas

• Consider the formulas of Example 2.29:

– Make sure you can read these expressions.

– Remove all redundant brackets from these expressions.

• Translate the following sentences into first-order logic. To express that two people are

married, use married (𝑥,𝑦) and single(𝑥) similarly that a person is single.

– Everyone is either single or married.

– If a person is married, their partner is not single.

– There is a person who is married to two different persons. Hint: use =.

syntax still allows us to construct formulas like 𝑃 (𝑥,𝑦), where we do not know what 𝑥 or 𝑦 are.

Since we want our formulas to be statements, which are either true or false, we are now going to

exclude such formulas, where the variables do not “belong” to any quantifier. For this, we will

formally define what it means to “belong” to a quantifier.

Every quantifier introduces a variable. This variable can then be used in the subformula contained

in the quantifier. We call this formula in which that variable can be used the scope of that variable.
For example, the scope of 𝑥 in the formula ∀𝑥 : 𝑥 = 𝑥 is the subformula 𝑥 = 𝑥 .

Note that in our example, the variable 𝑥 occurs three times. The first 𝑥 is between the quantifier

∀ and the colon (:). The other ones are within the subformula 𝑥 = 𝑥 of the quantifier. We notice

that the first 𝑥 is special and different from all the other uses of 𝑥 because it defines where 𝑥 can

then be used. This first occurrence of 𝑥 , between a quantifier and the corresponding colon, is

called the binding place of 𝑥 . It opens a scope, in which 𝑥 can then be used. The other uses of

𝑥 , which are in scope, are called bound occurrences. All other uses that are neither bindings nor
bound occurrences are called free uses. All the variables which have free uses in a formula are

called the free variables of that formula. We may shorten this to just saying that some variables

are free in some formula 𝜑 . Somewhat confusingly, we also say that a formula 𝜑 is closed
under a collection of variables 𝐴 if 𝐴 contains all free variables of 𝜑 .

In order for a formula to be considered a statement, it must not have free variables, otherwise, we

would not be able to determine whether such a formula is true or false. In fact, every (non-binding)

usage of a variable must be bound at a unique binding place. We thus refrain from formulas with

free variables, except when discussing the properties of formulas themselves.

While this rules out formulas like 𝑃 (𝑥,𝑦), for which we can not determine whether they are true

or false, this new rule also seems to forbid another group of formulas. For example, consider

∀𝑥 : ∃𝑥 : 𝑥 = 𝑥 . Without doubt, there are no free uses of 𝑥 in this term: Both uses appear to be

within both the scopes opened by the ∀-quantified 𝑥 and the ∃-quantified 𝑥 . This seems to violate

our condition that all uses of a variable must have a unique binding place: There are two suitable

binding places which could bind 𝑥 . To handle this case, we define a new rule: Variables are bound

at the nearest quantifier. To be precise, when some variable 𝑥 makes a binding occurrence when

another 𝑥 already is in scope, it opens a new scope. While the new scope is open, the old scope is

still there, but inactive. It is also said that the identifier is invisible. Thus, there is only ever one

43

Introduction to Mathematics in Computer Science Chapter 2: Logic

active scope for each variable. When this happens, we say that the inner variable shadows the
outer variable.

A connective like ∀ and ∃, which allows variables to have binding occurrence, is called a binder.

Ç Going Beyond: Shadowing

Shadowing very often appears in programming languages. For example, consider the

following snippet of C:

int x = 0;
int main() {

int x = 1;
printf("%d\n", x);

}

This code defines 𝑥 twice: once as a global variable with value 0, and once as a local

variable with value 1. Then, it prints 𝑥 . This program will print 1, since name analysis will

deduce that the inner, local 𝑥 is the active definition of 𝑥 , since the C standard specifies

that local variables shadow global variables.

Since all of this was very dry, we discuss these terms by annotating the formula in Figure 2.31.

∀𝑥 : 𝑃 (𝑥) → ∃𝑦 : 𝑇 (𝑥,𝑦, 𝑧) ∧ (∀𝑥 : 𝑅(𝑦, 𝑥)) ∧𝑄 (𝑦, 𝑥,𝑦)

Figure 2.31: A first-order formula annotated with scoping and binding information

First, we have three binders in this formula, namely ∀𝑥 , ∃𝑦 and ∀𝑥 again. Each of these opens

a scope. The binders contain binding occurrences of the variables 𝑥 and 𝑦. The outline of each

scope is displayed by underlining it in the corresponding color. Notice that the scope of the outer

𝑥 is made passive by that of the inner 𝑥 . Once the inner scope is terminated, the outer scope

continues. Each bound occurrence of a variable is connected by an arrow to the corresponding

binder. 𝑧 is the only free variable of that formula.

We have also drawn the syntax tree of this formula in Figure 2.32. Here, we have again drawn

arrows connecting the bound occurrences with their binding places. Also, the scopes of bindings

of 𝑥 have been highlighted by coloring the parts of the syntax tree where a scope is active. We can

see that the lower binder ∀𝑥 casts a shadow in the scope of the further-up binder ∀𝑥 by making it

inactive, hence the term shadowing. Also, once we have drawn the syntax tree, finding the correct

binder for a variable becomes easy, by following the following procedure: Start at some variable

𝑥 , then walk upwards until you find the lowest binder binding 𝑥 (this is the one encountered

first when walking upwards). The process of resolving which names bind where is called name
analysis.

Note that the scope of a variable bound in a quantifier is defined as the entire subformula of that

quantifier. While the scope might be inactive in some parts of that subformula due to shadowing, it

is nonetheless still there. If we change the names so that no shadowing appears, the outer variable

becomes usable again since the scope is again active. This is because the variable was always

44

Introduction to Mathematics in Computer Science Chapter 2: Logic

∀𝑥

→

∃𝑦

∧

𝑄 (·)

𝑦𝑥𝑦

∧

∀𝑥

𝑅(·)

𝑥𝑦

𝑇 (·)

𝑧𝑦𝑥

𝑃 (·)

𝑥

Figure 2.32: The syntax tree of a formula, visualizing active scopes, bindings, and shadowing

in scope, but just temporarily prevented from being used. When building formulas, shadowing

should be avoided since it makes formulas harder to comprehend.

We now know what bindings and scopes are and how we can resolve the bindings and free

variables of a formula. We learned that only closed formulas are valid mathematical statements.

b Checkpoint 2.33: Scoping

In Checkpoint 2.30, you were asked to construct several formulas.

For each of these, perform name analysis by annotating scope and binding information as

in Figure 2.31. Which variables are free?

Renaming Now, consider the formulas ∀𝑥 : 𝑥 = 𝑥 and ∀𝑦 : 𝑦 = 𝑦. We can see that these

formulas are the same, up to the naming of bound variables. If we consider the variable 𝑥 in

∀𝑥 : 𝑥 = 𝑥 , and rename the binding and all bound occurrences of that variable to 𝑦, then we get

the other formula. We call such a renaming operation, where we rename the binding as well as all

variables bound at that binding point, an 𝛼-renaming (read: “alpha-renaming”), or “consistent

renaming.” While we have not yet defined a semantics for formulas, we note that consistently

renaming a formula should under no circumstances change the semantics of it, because the

formula still ought to say the same. This is a fundamental principle in mathematics (and more

importantly computer science): The names we give to things do not really matter, except that

they make the statement easier to read for humans. For this reason, we say that two first-order

formulas are syntactically equal iff they only differ in the naming of bound variables, i.e. if one

can be consistently renamed to the other.

Consistent renaming seems easy at first. However, it is full of pitfalls and edge cases. For example,

consider ∀𝑥 : ∃𝑦 : 𝑥 = 𝑦 and ∀𝑦 : ∃𝑦 : 𝑦 = 𝑦. We can immediately see that these formulas

have different internal binding structures. However, we clearly tried to do a consistent renaming,

which should not have changed the internal binding structure, much less any other property

of the formula. The problem is that during the renaming, we renamed a variable 𝑥 to 𝑦 “under

a binder” already binding 𝑦. This process is called capture: By renaming 𝑥 to 𝑦, the binding

45

Introduction to Mathematics in Computer Science Chapter 2: Logic

point of the variable that used to be 𝑥 changes (“the variable is captured”), thereby altering the

internal structure of our formula. There is no easy solution to this problem – instead, we must be

very careful when renaming variables to not accidentally rename a variable 𝑥 to some variable

𝑦 which already is in scope. If we really need to do such a renaming, the solution is to first

consistently rename the variable which is blocking the original renaming into something new,

so that we do not incur capture. This is called capture-avoiding renaming, as opposed to the

naive, capture-incurring renaming. For example, a proper consistent renaming of 𝑥 to 𝑦 in our

example would be ∀𝑦 : ∃𝑧 : 𝑦 = 𝑧.

Terms

The definition of first-order formulas we just gave is actually incomplete. While it is already very

powerful, it misses an important feature: Constructing new objects from given objects. This will

be done by means of functions. Functions are stand-ins which describe objects constructed from

other objects. For example, when working with natural numbers, + is a function that takes two

natural numbers and describes a new one. In general, a function takes some objects as input and

describes a new object as output. The most important property of functions in mathematics is

that, given the same inputs, they always describe the same output. Importantly, we also have

functions which do not take inputs. These are essentially constants since they always describe

the same object.

We can already imagine how we would intuitively use functions in our logic. For example, the

fact that addition is commutative can be expressed as ∀𝑥 : ∀𝑦 : 𝑥 +𝑦 = 𝑦 + 𝑥 , or, if we refrain from

syntactic sugar, as ∀𝑥 : ∀𝑦 : =(+(𝑥,𝑦), +(𝑦, 𝑥)).
We will now formally extend our BNF to handle this:

Definition 2.34 (Syntax of First-Order Terms).

F1 ∋ 𝜑,𝜓 F · · ·
| 𝑃 (𝜏1, . . . , 𝜏𝑛) 𝑛 ∈ N

T ∋ 𝜏 F 𝑥

| 𝑓 (𝜏1, . . . , 𝜏𝑛) 𝑛 ∈ N

We introduced a new syntactic category T , of terms. A term 𝜏 is either a variable or a term

constructed by combining other terms with a function. Our notion of free and bound variables

now applies to terms as it applies to formulas since one term can now contain multiple variables.

Like predicates, they have an arity, which describes the number of terms we need to put into the

function. To continue our example, + has arity 2. Constants (like 0 or 1) have arity 0.

The way a term is read aloud is again highly dependent on the concrete symbol, again mirroring

predicates.

The function symbols are also part of the signature.

Substitution We have already seen capture-avoiding renaming. Capture-avoiding renaming is

just a core building block of a more general operation called capture-avoiding substitution, which

replaces a variable with a term.

46

Introduction to Mathematics in Computer Science Chapter 2: Logic

In a formula, we denote by 𝜑 [𝜏/𝑥] the capture-avoiding substitution of 𝑥 by 𝜏 . That is, all

free usages of 𝑥 are replaced by 𝜏 . Note that this only includes free usages: If 𝑥 is bound in some

subformula of 𝜑 , these usages are not replaced. Furthermore, 𝜏 can contain other variables, which

could become captured by binders in 𝜑 . In this case, we again might need to consistently rename

the conflicting binders so that no capture occurs.

We can also give a formal definition of substitution:

Definition 2.35 (Capture-Avoiding Substitution 𝜑 [𝜏/𝑥] and 𝜏 ′ [𝜏/𝑥]).

𝑦 [𝜏/𝑥] = 𝜏 if 𝑦 = 𝑥

𝑦 [𝜏/𝑥] = 𝑦 if 𝑦 ≠ 𝑥

(𝑓𝑛 (𝜏1, . . . , 𝜏𝑛)) [𝜏/𝑥] = (𝑓𝑛 (𝜏1 [𝜏/𝑥], . . . , 𝜏𝑛 [𝜏/𝑥]))
(𝑃𝑛 (𝜏1, . . . , 𝜏𝑛)) [𝜏/𝑥] = (𝑃𝑛 (𝜏1 [𝜏/𝑥], . . . , 𝜏𝑛 [𝜏/𝑥]))

(¬𝜑) [𝜏/𝑥] = ¬(𝜑 [𝜏/𝑥])
(𝜑 □𝜓) [𝜏/𝑥] = (𝜑 [𝜏/𝑥]) □(𝜓 [𝜏/𝑥])
(^𝑦 : 𝜑) [𝜏/𝑥] = ^𝑦 : (𝜑 [𝜏/𝑥]) if 𝑥 ≠ 𝑦,𝑦 not free in 𝜏

(^𝑦 : 𝜑) [𝜏/𝑥] = ^𝑦 : 𝜑 if 𝑥 = 𝑦

^ is a stand-in for any quantifier, and □ is a stand-in for any binary operator.

By ensuring that 𝑦 is not free in 𝜏 in the rule for substituting under a quantifier, we ensure that

there is no capture. However, this means that, if a naive substitution would incur capture, no

rule would be applicable. To proceed anyway, we must first consistently rename 𝑦 in the formula

^𝑦 : 𝜑 , as discussed. See Example 2.36 for how this works in practice.

< Example 2.36: Capture-Avoiding Substitution

• (∀𝑥 : 𝑥 + 𝑦 = 𝑦 + 𝑥) [0/𝑦] = (∀𝑥 : 𝑥 + 0 = 0 + 𝑥)
• (∀𝑥 : 𝑥 + 𝑦 = 𝑦 + 𝑥) [0/𝑥] = (∀𝑥 : 𝑥 + 𝑦 = 𝑦 + 𝑥)
• (∀𝑥 : 𝑥 + 𝑦 = 𝑦 + 𝑥) [𝑥/𝑦] = (∀𝑧 : 𝑧 + 𝑥 = 𝑥 + 𝑧) = (∀𝑤 : 𝑤 + 𝑥 = 𝑥 +𝑤)
• (∀𝑥 : 𝑥 + 𝑦 = 𝑦 + 𝑥) [𝑦/𝑦] = (∀𝑥 : 𝑥 + 𝑦 = 𝑦 + 𝑥)
• (∀𝑥 : 𝑥 + 𝑦 = 𝑦 + 𝑥) [(1 + 𝑦)/𝑦] = (∀𝑥 : 𝑥 + (1 + 𝑦) = (1 + 𝑦) + 𝑥)

2.2.2 Semantics

So far, we have only covered the syntax of first-order logic. We now know enough formalities

to actually define what it means for a first-order formula to be “true.” Unfortunately, we cannot

give a simple definition, as we did for propositional logic. The issue is that our formula now talks

about objects, which raises the question of what objects are meant precisely.

To answer this, we define the notion of a universe U, which is a special kind collection of

objects. The collection might be small, large or even infinite, but it may not be empty. What

makes this special is that each universe also defines the atomic predicates and functions for all

predicate and function symbols of a given signature. These are called the interpretations of

47

Introduction to Mathematics in Computer Science Chapter 2: Logic

these symbols. Here, we need to make precise the difference between a predicate symbol and its

interpretation: A function/predicate symbol is used to build first-order formulas. It takes several

terms as its argument. When we define its interpretation, we need to define something that does

not take terms as arguments, but instead takes objects of the specific universe as arguments.

This distinction between a function/predicate symbol and its interpretation is easily glossed

over, especially when one uses the same syntax for both the symbol and its interpretation. It

is nonetheless important, especially since the interpretation needs to be defined for all objects

in the universe so that the universal quantifier makes sense, even if not all such objects can be

described using terms.

Note that universes are often calledmodels. Examples 2.37 and 2.38 show how such universes

can be defined.

< Example 2.37: A Social Clique as a Universe

We can form a universe from a group of friends, to describe how they relate to each other.

Let’s say we have a group of friends, namely Anna, Bernd, Clara, Dieter, Erich, Felix and

Gerta. We might define 𝑥 𝑦 as “𝑥 is married to 𝑦”, and 𝑥 ♥ 𝑦 as “𝑥 is in love with 𝑦”.

U is fixed as the collection of the few friends above.

We could then draw the following relationship diagram:

Anna

BerndClara

Dieter

Erich

FelixGerta♥
♥ ♥ ♥

Here, the arrows define which way the predicates hold. Note that Clara loves Dieter, but

Dieter does not love her back, while Anna and Gerta both love and are married to each

other. We might call the situation between Felix and Bernd a loveless marriage as Felix

does not love Bernd, and say that Clara has a broken heart because Dieter does not love

her back.

< Example 2.38: The Universe of Natural Numbers

We can construct a universe by simply choosingU B N, i.e. the natural numbers become

our universe. This then means that the objects our formulas talk about are natural numbers.

In previous examples, we have used the function symbols 0, + and × when talking about

natural numbers. When building a universe, we must also specify how the function and

predicate symbols in our signature work for the objects of our universe. When choosing

U B N, it makes sense to give these symbols the usual definition, i.e. the function symbol

0 simply describes the natural number 0, + describes addition and so on. Similarly, = is

supposed to describe when two numbers are equal, and in our universe, this is exactly the

definition we will use (compare with Definition 2.41).

Now, given a universe, we can finally evaluate whether a formula holds in that universe. We

formally do this by defining evaluation and satisfaction, which describe how terms and formulas

are interpreted in our universe. To do so, we need an environment 𝜌 on that universe, which

assigns each variable an object from the universe. Evaluation T J·K𝜌 now takes a term and gives

48

Introduction to Mathematics in Computer Science Chapter 2: Logic

an object from the universe:

Definition 2.39 (Evaluation). LetU be a universe.

T J𝑥K𝜌 B 𝜌 (𝑥)
T J𝑓𝑛 (𝜏1, . . . , 𝜏𝑛)K𝜌 B ˆ𝑓U (T J𝜏1K𝜌 , . . . ,T J𝜏𝑛K𝜌)

So, to find out which object is meant by 𝑥 , we simply look into the environment. To find out which

object is described by a function, we take
ˆ𝑓U , which is the interpretation of 𝑓 in our universe,

and plug the objects described by the subterms into this.

Similarly, we have satisfaction, which defines whether a formula is “true” or satisfied under a
certain environment in some universe. When a formula 𝜑 is satisfied under some environment

𝜌 defining (at least) the free variables of that formula, we denote this as 𝜌 |= 𝜑 . Formally, it is

defined like this:

Definition 2.40 (Satisfaction). Let U be a universe, 𝜌 an environment on that universe. The
satisfaction relation 𝜌 |= 𝜑 is defined by structural recursion:

𝜌 |= ¬𝜑 iff not 𝜌 |= 𝜑
𝜌 |= 𝜑 ∧𝜓 iff 𝜌 |= 𝜑 and also 𝜌 |= 𝜓
𝜌 |= 𝜑 ∨𝜓 iff 𝜌 |= 𝜑 or else 𝜌 |= 𝜓 (or both)

𝜌 |= 𝜑 → 𝜓 iff, when assuming 𝜌 |= 𝜑 , then 𝜌 |= 𝜓
𝜌 |= ∀𝑦 : 𝜑 iff, for every object 𝑢 ofU, 𝜌 [𝑦 ↦→ 𝑢] |= 𝜑
𝜌 |= ∃𝑦 : 𝜑 iff, for at least one object 𝑢 ofU, 𝜌 [𝑦 ↦→ 𝑢] |= 𝜑

𝜌 |= 𝑃𝑛 (𝜏1, . . . , 𝜏𝑛) iff 𝑃U (T J𝜏1K𝜌 , . . . ,T J𝜏𝑛K𝜌) is true

These definitions are similar to those of predicate logic. Again, we define the meaning of our

connectives by referring to the meta-level, referencing the colloquial understanding of words

like “and,” “when” or “for every.” By now, our colloquial understanding of “and,” “or,” “not” and

“when” should be clear, since we discussed these in the previous chapter. This process of defining

the truth value of some formula by checking whether it is satisfied in some universe, for some

environment assigning free variables to values, is also called interpretation.

When the environment is empty, we can simply omit it, i.e. simply write |= 𝜑 . We say the

environment is “initially empty,” and we say that a formula is satisfied if it is satisfied under

the empty environment. This reinforces that it does not make sense to talk about satisfaction

for formulas with free variables: The environment might be undefined at places, and thus it is

undefined whether a formula is satisfied or not. Further, even if the environment were defined,

whether the formula ends up satisfied or not highly depends on which concrete objects end up in

the environment. Since we want to avoid these ambiguities, we have forbidden such cases, so no

issues actually arise.

Sadly, the rules for quantifiers make things much more difficult for us. Before, we could figure

out whether a propositional formula was true by simply computing its truth value given the truth

values for the atomic propositions. Now, we can no longer do so, as we would have to figure out

whether a formula is true for every possible object in the universe. Since the universe can be

infinite, this might take an infinite amount of time. Hence, when asked to determine whether a

49

Introduction to Mathematics in Computer Science Chapter 2: Logic

formula with quantifiers is true, we must reason about it using logical arguments. We will stick

to an intuitive style of reasoning for now, where we simply rely on our intuitive understanding of

mathematics.

There are a few predicates we would like to always behave the same in any universe:

Definition 2.41 (Canonical Predicates).

• ⊤: This predicate (of arity 0) is always satisfied.

• ⊥: This predicate (of arity 0) is never satisfied.

• =: The interpretation of 𝑥 = 𝑦 (which has arity 2) for two objects 𝑢𝑥 , 𝑢𝑦 of the universe is
that 𝑢𝑥 = 𝑢𝑦 iff 𝑢𝑥 and 𝑢𝑦 are the same object.

From now on, we consider all universes to define these interpretations.

As long as our universes are small, we can check whether a formula is true by simply enumerating

all the cases. Let us consider an example:

< Example 2.42: Satisfaction in a Social Clique

We again consider our friend group from Example 2.37. The following statements are

satisfied in this universe:

• Clara
4 ♥ Dieter

• Bernd Felix

• ∀𝑥 : ∀𝑦 : 𝑥 𝑦 → 𝑦 𝑥

• ∀𝑎 : ∀𝑏 : 𝑎 ♥ 𝑏 ∧ 𝑏 ♥ 𝑎 → 𝑎 𝑏

Conversely, Dieter ♥ Clara or Felix ♥ Bernd are not satisfied.

We can now, finally, define a useful notion of truth for first-order formulas:

Definition 2.43 (Validity). A first-order formula 𝜑 is

• valid iff it is satisfied by all universes.

• satisfiable iff it is satisfied by at least one universe.

• contradictory iff there is no universe satisfying it.

It turns out that validity is very close to a suitable notion of truth. For now, we call a formula

semantically true iff it is valid. Until we introduce other notions of truth, we can leave out

“semantic” and just say “truth.”

We are also able to define semantic equivalence of first-order formulas:

Definition 2.45. Two first-order formulas 𝜑,𝜓 are semantically equivalent iff in all universes
U, and for all environments 𝜌 , 𝜌 |= 𝜑 if and only if 𝜌 |= 𝜓 . We write 𝜑 ≡ 𝜓 . Similarly, two terms
𝑡1, 𝑡2 are semantically equivalent iff in all universesU, and for all environments 𝜌 , the objects
T J𝑡1K𝜌 and T J𝑡2K𝜌 are the same.

4
Here, we abuse notation by referring to concrete objects of one specific universe. We could make this formal by

declaring that the names (like Clara or Dieter) are constant symbols.

50

Introduction to Mathematics in Computer Science Chapter 2: Logic

< Example 2.44: Validity

⊤ is valid, as is ∀𝑥 : 𝑥 = 𝑥 . Since they are valid, they are also satisfiable. ⊥ is contradictory.

∀𝑥 : 𝑃 (𝑥) is satisfiable, but neither valid nor contradictory, since 𝑃 might be always

satisfied in some universes, but not in others.

b Checkpoint 2.46: Satisfaction

For each of the following formulas, determine whether they are valid, satisfiable or contra-

dictory. Give an explicit (counter-)example universe if possible.

• (∀𝑥 : 𝑃 (𝑥, 𝑥)) → ∀𝑥 : ∃𝑦 : 𝑃 (𝑦, 𝑥)
• (∀𝑥 : 𝑃 (𝑥)) → (∃𝑥 : 𝑃 (𝑥))
• (∃𝑥 : 𝑃 (𝑥)) → (∀𝑥 : 𝑃 (𝑥))
• (∀𝑥 : ∃𝑦 : 𝑃 (𝑥,𝑦)) → (∀𝑥,𝑦 : 𝑃 (𝑥,𝑦) → 𝑄 (𝑦, 𝑥)) → ∃𝑦 : 𝑄 (𝑎,𝑦) ∨𝑄 (𝑦, 𝑎) Note that 𝑎
is a constant.

2.2.3 Working with First-Order Logic

Syntactic Sugar

Similarly to propositional logic, working with plain first-order formulas is very tedious. Hence,

we define similar syntactic sugar, to make working within first-order logic more attractive.

Definition 2.47 (First-Order Syntactic Sugar).

𝜑 ↔ 𝜓 B (𝜑 → 𝜓) ∧ (𝜓 → 𝜑)
𝜑 ⊕𝜓 B 𝜑 ∧ ¬𝜓 ∨𝜓 ∧ ¬𝜑

∀𝑥1, . . . , 𝑥𝑛 : 𝜑 B ∀𝑥1 : · · · ∀𝑥𝑛 : 𝜑

∃𝑥1, . . . , 𝑥𝑛 : 𝜑 B ∃𝑥1 : · · · ∃𝑥𝑛 : 𝜑

∀𝜓 (𝑥) : 𝜑 B ∀𝑥 : 𝜓 (𝑥) → 𝜑

∃𝜓 (𝑥) : 𝜑 B ∃𝑥 : 𝜓 (𝑥) ∧ 𝜑

The first few definitions are straightforward, especially since we already know some of them

from propositional logic. In general, all syntactic sugar defined for propositional logic can also

be used in first-order formulas. The last two definitions might seem confusing. By 𝜓 (𝑥) we
denote a predicate-form, which basically is a formula where 𝑥 is free. 𝜓 (𝑦) then denotes that

same formula with 𝑦 for 𝑥 . This basically allows one to use this syntactic sugar with arbitrary,

“user-defined” predicates. The syntactic sugar is inspired by colloquial statements like “There is

an 𝑛 > 5 for which . . .”, which can now be written as ∃𝑛 > 5 : 𝜑 .

Seeing why this definition of syntactic sugar is correct can be hard, so we will consider an example.

Consider ∃𝑛 > 5 : even(𝑛), which is just ∃𝑛 : 𝑛 > 5 ∧ even(𝑛). The first formula asks us to find a

number > 5 such that it is even. When we think about this, this precisely means a number which

is both > 5 and also even. It would not make sense to find a number which is ≤ 5, or not even.

Hence, both properties have to hold, and this is what our syntactic sugar expresses.

51

Introduction to Mathematics in Computer Science Chapter 2: Logic

Similarly, we will consider ∀𝑛 > 5 : even(𝑛), which is just ∀𝑛 : 𝑛 > 5→ even(𝑛). Remember that

the universal quantifier asks us to check whether its enclosed formula is satisfied for all possible

objects, i.e. for all possible numbers in this case. Thus, we want the whole formula to be false if

and only if we find a counterexample, which would be a number that is > 5, but not even. So,

during the checking whether our quantifier is satisfied, we should ignore all numbers which

are ≤ 5. This is precisely what the implication 𝑛 > 5→ even(𝑛) accomplishes: This formula is

satisfied as soon as 𝑛 ≤ 5, hence we never have counterexamples ≤ 5, since they can not make

our formula false. On the other hand, for numbers larger than 5, the implication is satisfied iff the

right-hand side is satisfied, i.e. if the number is even. To summarize, this now means that when

checking if the universal quantifier is satisfied, we can ignore all numbers ≤ 5, but we must still

look at whether the contained expression is satisfied for all numbers > 5, which is exactly what

we wanted our syntactic sugar to do.

How to Think aboutQuantifiers

What does it mean for a statement like ∀𝑥 : ∃𝑦 : 𝑥 𝑦 to be true? Is there a difference between

that formula and the formula ∃𝑥 : ∀𝑦 : 𝑥 𝑦? The answer to the second question is “Yes,” and

this will be obvious very soon.

Let’s assume that the statement 𝜑 B ∀𝑥 : ∃𝑦 : 𝑥 𝑦 is true, which means that it is satisfied

by all universes. What can we do with that knowledge? Let’s focus on the friend group model

of Example 2.37. In particular, let’s use Felix for the following example: Since 𝜑 is a universally

quantified statement, we can now plug Felix into that statement and get that ∃𝑦 : Felix 𝑦. We

then arrive at an existentially quantified statement. Where we previously were able to plug some

arbitrary person “into” that statement, we are now able to “pull out” someone. Concretely, we

know that there is some person and that Felix is married to this person. However, we do not

know which person this is. We can use a variable, like 𝑦, to refer to that person.

Conversely, let’s try the same for 𝜓 B ∃𝑦 : ∀𝑥 : 𝑥 𝑦. Here, we start by pulling out some

person 𝑦 for which ∀𝑥 : 𝑥 𝑦 holds. At this point, we can plug Felix into this formula to arrive

at Felix 𝑦. Similarly, we can derive that 𝑦 𝑦.

Let’s consider a different example, this time on the natural numbers. The statement∀𝑥 : ∃𝑦 : 𝑦 > 𝑥

is satisfied by the natural numbers. In words, that statement says that there is no largest natural

number, or more formally that we can always find a larger number.

Now, plug in a number, for example 5. We then get out a number 𝑦 > 5. That is all we know about

𝑦. 𝑦 might be 6, it might be 100, or 42 · 101337.
In general, if we have a formula which starts with an alternation of quantifiers, like ∀𝑥 : ∀𝑦 : ∃𝑧 :
∀𝑤 : . . ., we can think about this as some kind of game. We call this game the quantifier game.
Definition 2.48 (Quantifier Game). The quantifier game consists of two players: the prover, and
the refuter. It is played in some universeU. Initially, the prover asserts a formula 𝜑 in prenex
normal form, that is, all the quantifiers are at the beginning. The players take turns as follows:

• When 𝜑 = ∀𝑥 : 𝜑 ′, it’s the refuter’s turn, and they must present an object 𝑢𝑥 to the prover.

• When 𝜑 = ∃𝑥 : 𝜑 ′, it’s the prover’s turn, and they must present an object 𝑢𝑥 to the refuter.

In either case, the objects to be presented are elements ofU. Afterwards, the players continue with
𝜑 ′, where 𝑥 is understood to refer to the object 𝑢𝑥 .

52

Introduction to Mathematics in Computer Science Chapter 2: Logic

The game ends when the formula no longer starts with a quantifier. Then, the remaining formula
(which now only contains operators of propositional logic, as well as relation symbols) is evaluated
using the accumulated objects. If the formula is satisfied, the prover wins, otherwise, the refuter
wins.

Lemma 2.49. Let 𝜑 ∈ F1 and U be a universe. If the prover always wins5 the game on 𝜑 (for
universeU), then 𝜑 is true in that universe. Conversely, for a true formula, there always is a winning
strategy for the prover.

For now, let’s say that we play as the refuter.

Then, since the formula ∀𝑥 : ∃𝑦 : 𝑦 > 𝑥 is true, this means that there is a strategy the prover can

use such that they always win. This strategy is quite simple: When we give a number 𝑥 to the

prover, the prover simply gives 𝑥 + 1 back to us. Since 𝑥 + 1 > 𝑥 , the prover always wins.

Also consider the game for ∀𝑥 : ∃𝑦 : 𝑦 < 𝑥 . This formula is false. Thus, there must be some clever

way for us to play, so that the prover is forced to lose. Concretely, we can give 𝑥 B 0 to the prover.

The prover must then deliver a natural number 𝑦 < 0, which is of course impossible since such a

number does not exist.

Similarly, the formula ∃𝑦 : ∀𝑥 : 𝑦 > 𝑥 is false. Try figuring out a strategy that makes the prover

lose.

ReorderingQuantifiers

In the last section, we saw that ∀𝑥 : ∃𝑦 : 𝑦 > 𝑥 was true for the natural numbers, while

∃𝑦 : ∀𝑥 : 𝑦 > 𝑥 was not. Both formulas are the same, except we have swapped ∀𝑥 and ∃𝑦. Thus,
we can not generally swap quantifiers around. This should be obvious since this would mess up

the order of moves in the game outlined in the last chapter.

However, quantifiers can sometimes be swapped around. In general, if you have several quantifiers

of the same kind (i.e. universal or existential), then they can be swapped around, as long as they

are directly “next to” each other.

Let’s again focus on our friend group. Consider the formula ∀𝑥 : ∀𝑦 : ∃𝑧 : 𝑥 𝑧 ∧ 𝑦 ♥ 𝑧. In that

formula, ∀𝑥 and ∀𝑦 are next to each other, since there are no other quantifiers between those.

Thus, the formula where we swap ∀𝑥 and ∀𝑦 to end up with ∀𝑦 : ∀𝑥 : ∃𝑧 : 𝑥 𝑧 ∧ 𝑦 ♥ 𝑧 is
equivalent to the original formula, since ∀𝑥 and ∀𝑦 have the same kind.

This can also be seen when playing the quantifier game on those formulas. For both formulas, the

refuter has to start by giving an object to the prover. Then, the refuter gives another object to the

prover. The prover does not get to play between our two moves. Thus, it does not matter if the

prover is first given the object 𝑥 , and then 𝑦, or if it is the other way around for the other formula

since, in both cases, the prover ends up in the same situation. One could say that the prover is

handed both objects “at the same time.”

The situation is different in a formula like ∀𝑥 : ∃𝑧 : ∀𝑦 : 𝑥 𝑧 ∧ 𝑦 ♥ 𝑧. Here, the refuter first
gives an object 𝑥 to the prover, who then gives back an object 𝑧. Then, the refuter again gives 𝑧 to

the prover.

5
Assuming that both players play optimally.

53

Introduction to Mathematics in Computer Science Chapter 2: Logic

If we naively swap the quantifiers to get the formula ∀𝑦 : ∃𝑧 : ∀𝑥 : 𝑥 𝑧 ∧ 𝑦 ♥ 𝑧, we end
up with a formula that is not equivalent to the original. This is because there is an existential

quantifier between ∀𝑥 and ∀𝑦, so they can not simply be re-ordered. When thinking about the

game, the refuter could previously use the 𝑧 they were given by the prover to make our choice

of 𝑦. Now, the refuter can no longer do this for 𝑦, but instead can do so for 𝑥 . Thus, both are no

longer playing the same game after the re-ordering, and the formula has changed meaning.

The situation for the existential quantifier is completely analogous. This also explains the syntactic

sugar allowing us to write ∀𝑥,𝑦, 𝑧 instead of ∀𝑥 : ∀𝑦 : ∀𝑧. Since the order of these quantifiers
does not really matter, we can just write one quantifier with multiple variables, without really

worrying about which of these comes “first.”

More onQuantifiers

With our quantifier, we can model the important properties that some property holds “for all” or

“for at least one” object. This might make us wonder whether we can also express properties like

“for at least two” or “for exactly one.” In fact, we can define many such quantifiers just using the

basic quantifiers of ∀ and ∃.
It turns out that “unique existence” ∃!𝑥 : 𝜑 (𝑥), which states that 𝜑 holds for exactly one object, is

another important property in mathematics. This property allows us to indirectly characterize

objects by just describing a certain property that uniquely defines that object.

Definition 2.50 (Uniqueness). The formula ∃!𝑥 : 𝜑 (𝑥) is syntactic sugar for the following:

∃𝑥 : 𝜑 (𝑥) ∧ ∀𝑦 : 𝜑 (𝑦) → 𝑥 = 𝑦

This captures our intuitive notion of “there is only one”: Imagine that there were two objects 𝑥,𝑦

both satisfying 𝜑 (𝑥). Then we can derive that 𝑥 = 𝑦, so they are in fact the same object.

b Checkpoint 2.51: FancyQuantifiers

Dieter has tried to define the quantifier ∃!2, which is supposed to mean that “there are

exactly two.” What is wrong with the following definition?

∃!2𝑥 : 𝑃 (𝑥) := ∃!𝑥 : ∃!𝑦 : 𝑃 (𝑥) ∧ 𝑃 (𝑦) ∧ 𝑥 ≠ 𝑦

Can you fix it?

Can you further define the following quantifiers? If not, why not?

• There are at least two

• There are at most three

• For all but four

• For finitely many

• For infinitely many

• For all but finitely many

• For none

• For exactly 50% of the universe

This is precisely what uniqueness means in maths: That any two objects satisfying a property

are the same. Thus, the ∃! quantifier is sometimes read as “there exists a unique.” For an intuitive

understanding, consider that every person has a unique fingerprint. Thus, if your fingerprint

54

Introduction to Mathematics in Computer Science Chapter 2: Logic

is found at a crime scene, this can be used to convict you of that crime, since your fingerprint

uniquely identifies you. In that situation, you can not argue that another person could have left

your fingerprint, since all people who could leave that fingerprint are equal to yourself.

Uniqueness also affects how we talk about objects. For example, we might say that 4 is a common

divisor of 8 and 12. However, we say that 4 is the greatest common divisor of 8 and 12. This is

because there can be multiple common divisors, but only one unique lowest common divisor. If

we were to say that 4 is the common divisor of 8 and 12, this would be wrong, since we would

imply that is the only such divisor, which it is not, as 2 and 1 also are divisors of both 8 and 12.

Describable Objects

A closely related concept is that of first-order describability.

Definition 2.52 (First-Order Describability). In a universeU, an object 𝑜 ∈ U is called first-
order describable iff there is a first-order formula 𝜑 (𝑥) such that

• [𝑥 ↦→ 𝑜] |= 𝜑 (𝑥)

• For all other 𝑜 ′ ∈ U, [𝑥 ↦→ 𝑜 ′] ̸|= 𝜑 (𝑥)

In other words, 𝑜 is the unique object satisfying 𝜑 (𝑥).

Remember how in Example 2.42, we listed several formulas that were satisfied in that clique.

However, we abused notation by directly using the people of our social clique in the formulas. In

first-order logic, when referring to objects, we can not do this. We are limited to just using the

function and predicate symbols that are part of our signature.

In that example, both and ♥ are in our signature, so we can use them to construct new formulas.

However, there are no function symbols in our signature. This is because we defined our first-order

formulas to make sense in any possible social clique. Thus, having a symbol like Clara would

then mean that every social clique needs to have a person called Clara. In general, we can have a

lot of elements in our universe, but we might not be able to find a term that describes all of them.

However, not all is lost. We are still able to talk about certain objects of our model by giving a

formula 𝜑 that first-order describes that object – that is, a formula that is true only for that object,

and false for any other object.

If an object is not first-order describable, then there must be some other object that satisfies all

the same first-order properties the first object does. We say that such objects are first-order indis-

tinguishable, while two objects that are not indistinguishable are first-order distinguishable.

Quantifiers and Finite Universes The universe of Example 2.37 is a special kind of universe:

It only has finitely many elements.

In general, first-order logic does not care about whether the model is finite, or infinite. In fact,

later on, we mostly work in infinite universes.

Finite universes, however, have a very nice property: We can easily check whether a formula

is true in that finite model by simply enumerating all the elements in order to check whether

something holds for all, or for at least one.

55

Introduction to Mathematics in Computer Science Chapter 2: Logic

< Example 2.53: First-Order Describability

In Example 2.37, we can see that Clara is the only person having the following properties:

• Dieter is not married.

• Dieter is not in love with anyone.

Thus, Dieter is first-order describable with the formula IsDieter :

IsDieter (𝑥) B (∀𝑦 : ¬(𝑥 𝑦)) ∧ (∀𝑦 : ¬(𝑥 ♥ 𝑦))

Anna is not first-order describable, since we can not distinguish her from Gerta.

b Checkpoint 2.54

Who in Example 2.37 is first-order describable? Give a formula describing them, or another

person that satisfies all properties the first person also does!

In fact, if we are in an universe where there are terms 𝑡1, . . . , 𝑡𝑛 describing all the objects in that

universe, we can even completely remove quantifiers:

• A quantifier ∀𝑥 : 𝜑 (𝑥) is transformed to 𝜑 (𝑡1) ∧ 𝜑 (𝑡2) ∧ · · · ∧ 𝜑 (𝑡𝑛).

• A quantifier ∃𝑥 : 𝜑 (𝑥) is transformed to 𝜑 (𝑡1) ∨ 𝜑 (𝑡2) ∨ · · · ∨ 𝜑 (𝑡𝑛).

We can also use this to explain the ∀𝜓 (𝑥) : 𝜑 syntactic sugar from before. Let’s say we want to

express the property that “Felix is married to all people loving him” In first order logic, this reads

as ∀𝑥 ♥ Felix : Felix 𝑥 .

Note that this is just syntactic sugar for ∀𝑥 : 𝑥 ♥ Felix → Felix 𝑥 . This is often confusing

since the quantified formula is true for all persons not married to Felix. It becomes more clear

when we consider the formula for every person in that universe.

x 𝑥 ♥ Felix Felix 𝑥 𝑥 ♥ Felix→ Felix 𝑥

Anna false false true

Bernd true true true

Clara false false true

Dieter false false true

Erich true false false

Felix false false true

Gerta false false true

We can see that there is one person (Erich) for whom the quantified formula is false, so the overall

formula with the universal quantifier is also false. We can see that the formula can only become

false if there is a person for whom the precondition is true, but the postcondition is not. By using

an implication, we are able to ignore all other elements of our model, for which the precondition

is false. They no longer affect the truth of the overall quantifier since they are already true and do

56

Introduction to Mathematics in Computer Science Chapter 2: Logic

not need to be considered. Thus, the only elements left to check are those we actually care about,

namely Erich and Bernd.

2.2.4 Laws

In the last chapter, we have seen some laws of propositional logic. All of these laws are still laws

of first-order logic.

However, we can now give more laws, which make use of quantifiers:

Lemma 2.55 (Algebraic Laws of First-Order Logic).

𝜑 (𝑥) denotes a predicate-form on 𝑥 , i.e. a user-defined predicate on 𝑥 .

Quantifier negation
¬∀𝑥 : 𝜑 ≡ ∃𝑥 : ¬𝜑
¬∃𝑥 : 𝜑 ≡ ∀𝑥 : ¬𝜑

Quantifier reordering
∀𝑥 : ∀𝑦 : 𝜑 ≡ ∀𝑦 : ∀𝑥 : 𝜑

∃𝑥 : ∃𝑦 : 𝜑 ≡ ∃𝑦 : ∃𝑥 : 𝜑

Pulling out universal quantifiers .
We require that 𝑥 does not appear free in𝜓 .
(∀𝑥 : 𝜑) ∧𝜓 ≡ ∀𝑥 : 𝜑 ∧𝜓
(∀𝑥 : 𝜑) ∨𝜓 ≡ ∀𝑥 : 𝜑 ∨𝜓
𝜓 → (∀𝑥 : 𝜑) ≡ ∀𝑥 : 𝜓 → 𝜑

(∀𝑥 : 𝜑) → 𝜓 ≡ ∃𝑥 : 𝜑 → 𝜓

Pulling out existential quantifiers.
We require that 𝑥 does not appear free in𝜓 .
(∃𝑥 : 𝜑) ∧𝜓 ≡ ∃𝑥 : 𝜑 ∧𝜓
(∃𝑥 : 𝜑) ∨𝜓 ≡ ∃𝑥 : 𝜑 ∨𝜓
𝜓 → (∃𝑥 : 𝜑) ≡ ∃𝑥 : 𝜓 → 𝜑

(∃𝑥 : 𝜑) → 𝜓 ≡ ∀𝑥 : 𝜑 → 𝜓

Quantifier splitting
(∀𝑥 : 𝜑) ∧ (∀𝑥 : 𝜓) ≡ ∀𝑥 : 𝜑 ∧𝜓
(∃𝑥 : 𝜑) ∨ (∃𝑥 : 𝜓) ≡ ∃𝑥 : 𝜑 ∨𝜓

Unused quantifier removal.
We require that 𝑥 does not appear free in 𝜑 .
𝜑 ≡ ∀𝑥 : 𝜑

𝜑 ≡ ∃𝑥 : 𝜑

Environment weakening
If 𝜌1 ⊑ 𝜌2 and 𝜌1 |= 𝜑 then 𝜌2 |= 𝜑
If 𝜌1 ⊑ 𝜌2 then T J𝜏K𝜌1 = T J𝜏K𝜌2

Laws of equality
∀𝑥 : 𝑥 = 𝑥 Reflexivity
∀𝑥,𝑦 : 𝑥 = 𝑦 ∧𝜓 (𝑥) → 𝜓 (𝑦) Substitutivity
∀𝑥,𝑦 : 𝑥 = 𝑦 → 𝑦 = 𝑥 Symmetry
∀𝑥,𝑦, 𝑧 : 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 → 𝑥 = 𝑧 Transitivity

By 𝜌1 ⊑ 𝜌2, we denote that 𝜌2 has at least all the mappings 𝜌1 has.

Proof sketch. We delay the proof of most lemmas to the next chapter.

• Laws of equality: The reflexivity and substitutivity laws are better understood as axioms

(see Definition 2.60). They formally capture the properties we intuitively mean when we

say the same. Thus, they can not be proven, we can only make sure that they match up

with our intuitive understanding of being the same.

Symmetry and transitivity can be proven using the mentioned axioms. We also delay this

to the next chapter.

57

Introduction to Mathematics in Computer Science Chapter 2: Logic

• Environment weakening:

Since T J·K𝜌1 and 𝜌1 |= · only look up some objects in 𝜌1, if we have a map 𝜌2 with additional

mappings, they are not used and do not affect the result.

Formally, this is proven by structural induction (see Section 5.4) on the formula/term, with

the environment quantified. □

. Warning

Laws marked with . rely on the fact that the universe is not empty. They might no

longer work when the syntactic sugar ∀𝜑 (𝑥) : 𝜓 (𝑥) is used, since 𝜑 (𝑥) might be false for

all objects. The other laws still work when using that syntactic sugar, except that quantifier

splitting only works when the two quantifiers on the left have the same 𝜑 .

Here, we have proven the laws of equality by referring to our intuitive notion of “sameness.”

Alternatively, these laws can be seen as the definition of equality as a predicate with two properties:

First, everything is equal to itself. Second, when two things are equal, all properties of one element

hold for the other. That is, these elements are indistinguishable. The first two laws are powerful

to derive the other laws, by cleverly choosing𝜓 .

The weakening laws allow us to use the fact that a formula is true in one environment, and

substitute it into a different environment as long as the environment only becomes larger, without

changing existing definitions.

2.2.5 Theories

In this chapter, we have already seen how we can use first-order logic. Now, we will have a closer

look at how this is done. For this, we will explore how we model mathematical definitions in

first-order logic.

The first step is to pick a signature of symbols. For example, when modeling relationships as in

Example 2.37, we add the predicate symbols ♥ and to our signature, besides the usual predicate

symbols =,⊤,⊥ we always require.

From these basic definitions, we can derive more complicated properties. For example, we can

model when someone is heartbroken. This way, we can give a rigorous definition to these derived

propositions.

Definition 2.56 (Derived Propositions for Social Cliques).

• heartbroken𝑎 B ∃𝑏 : 𝑎 ♥ 𝑏 ∧ ¬(𝑏 ♥ 𝑎).

• 𝑎 ̸♥ 𝑏 B 𝑎 𝑏 ∧ ¬(𝑎 ♥ 𝑏).

We can now write down first-order formulas describing the internal workings of social cliques.

For example, consider ∀𝑎, 𝑏 : 𝑎 𝑏 → 𝑏 𝑎. This formula simply says that marriages are

reciprocal, you can not be married to someone without them also being married to you. Formally,

we say that marriage is symmetric. We agree that this law should hold for all actual social

cliques, so it should be true. However, with our notion of truth so far – validity in all universes

– the formula is not true. This is because we can easily construct “strange” universes where

58

Introduction to Mathematics in Computer Science Chapter 2: Logic

𝑎 𝑏 holds, but the converse does not. However, we agree that these universes do not describe

well-formed social groups. When we want to work with social groups expressed as universes of

first-order logic, we agree that there are some basic properties these universes must fulfill, like

the above property.

To exclude these unwanted universes, we lay down a set of requirements all universes we want

to consider when trying to model social groups must fulfill. We formalize these requirements as

first-order formulas. Each such first-order formula is called an axiom. A theory is a collection of

such axioms for a given signature. Note that “theory” also refers to all true statements under that

theory, not just the specific set of axioms.

Ç Going Beyond: On Formalization

This process of making reasoning more formal by first fixing and then sticking to a

collection of axioms has several advantages. First, we improve our intuitive understanding

of the structure in question (e.g. the natural numbers) by trying to find the basic properties

of it. Second, when validating whether something is true by basing it on the axioms, we

can be as certain of its validity as we are of the validity of the axioms. Lastly, this allows

us to communicate our results to other mathematicians without having to completely

spell out our intuitive notion of the structure in question—other mathematicians need

only look at our axioms to see whether our results apply to their intuitive notion of the

structure in question. This way, axioms define a common set of assumptions, without

which collaborating on problems would be impossible.

This process of finding axioms is called axiomatization or formalization. Historically,
it has been an extremely successful endeavor. To see why, try defining what a natural

number is without referencing the word “number” or related words. You might see that

this is almost impossible. By axiomatizing numbers, we are able to define the numbers as

“members of some universe satisfying these axioms.” That definition is rather clever since

we do not actually describe what a number is. Instead, we defined numbers by describing

how they behave and which properties they obey. Nonetheless, this definition enables

anyone to work with natural numbers. This kind of definition is called extensional and is

extremely common in mathematics.

< Example 2.57: The Theory of Social Groups

Social groups are described by two binary predicates, and ♥, for which the following

axioms must hold:

(a) ∀𝑎, 𝑏 : 𝑎 𝑏 → 𝑏 𝑎

(b) ∀𝑎, 𝑏, 𝑐 : 𝑎 𝑏 → 𝑎 𝑐 → 𝑏 = 𝑐

(c) ∀𝑎 : ¬(𝑎 𝑎)

(d) ∀𝑎, 𝑏 : 𝑎 ♥ 𝑏 ∧ 𝑏 ♥ 𝑎 → 𝑎 𝑏

Now that we have defined what universe “make sense” for a theory, we refine our notion of truth

to limit itself to those universes.

59

Introduction to Mathematics in Computer Science Chapter 2: Logic

b Checkpoint 2.58

What does each of the axioms in Example 2.57 mean? Describe them in natural language!

Definition 2.59. Given a theoryM (which is a collection of axioms), a formula 𝜑 is

• valid moduloM iff it is satisfied in all universes also satisfying all axioms inM.

• satisfiable moduloM iff it is satisfied in at least one universe also satisfying all axioms
inM.

• contradictory moduloM iff it is not satisfiable moduloM.

When talking about formulas in the context of a specific theoryM, we consider them semanti-
cally true iff they are valid moduloM.

We can now also give a more formal axiomatic description of the canonical predicates of Defini-

tion 2.41:

Definition 2.60 (Axioms of the canonical predicates).

• The axiom for the predicate ⊤ is simply ⊤, that is, ⊤ is always valid.

• The axiom for ⊥ similarly is ¬⊥, that is, ⊥ is never valid.

• The axioms for equality are as follows:

– ∀𝑥 : 𝑥 = 𝑥 .

– ∀𝑥,𝑦 : 𝑥 = 𝑦 → 𝜑 (𝑥) → 𝜑 (𝑦)

We already know these axioms from our collection of laws (Lemma 2.55). The second axiom
is actually an axiom scheme, which means that there are infinitely many axioms, one for
each possible predicate form that first-order logic can express.

To summarize this chapter, we now have a very formal way to make mathematical statements

about something, for example social groups: First-order formulas over the signature of social

groups. We also have a somewhat precise notion of truth for these statements: validity modulo

the theory of Example 2.57.

This approach of finding axioms to indirectly describe the objects we work with is the foundation

of modern mathematics. It is used to precisely define the natural numbers, the real numbers, or

sets, and to formally define other classes of mathematical objects like groups.

60

3
�� Proofs and Deductions

To do mathematics, we need to figure out whether our statements are true. In the last chapter,

we already defined what it means for a statement to be true. This definition, however, is hard to

work with in practice.

For example, consider the statement 𝑃 ∧𝑄 → 𝑄 ∧ 𝑃 . We can quickly see that this should be true

for all possible values of 𝑃,𝑄 , since conjunction is commutative. However, our current notion

dictates that we enumerate all possible combinations, for example in a truth table. While this is

possible for propositional logic, this quickly becomes impossible for first-order logic.

For instance, let’s say we wanted to figure out whether the following formula is true:

(∀𝑥,𝑦 : 𝑃 (𝑥,𝑦) → 𝑄 (𝑦, 𝑥)) ∧ (∀𝑥 : 𝑃 (𝑥, 𝑥)) → ∀𝑦 : 𝑄 (𝑦,𝑦)

Our definition of truth requires we check this formula in all possible universes, and for each

universe, consider every possible individual of that universe. This is of course impossible since

there are infinitely many universes, each of which may contain infinitely many individuals.

Yet, our intuition tells us that the formula is true in all universes: This is because if 𝑃 (𝑥, 𝑥) holds
for all 𝑥 , and since 𝑃 (𝑥, 𝑥) means that 𝑄 (𝑥, 𝑥) is also true for any 𝑥 , we can conclude that 𝑄 (𝑦,𝑦)
holds for any 𝑦.

A proof is a formal argument that tries to explain why something is true, using reasoning like

that presented in the above paragraph. Instead of trying to manually check our formula in every

possible universe, we attempt to reason logically about all universes all at once.

This is, of course, problematic: How do we avoid mistakes when arguing? How can we be

absolutely sure that we are not misled when reading arguments made by other people, or worse,

how do we avoid misleading ourselves?

Over time, mathematicians have figured out a system of reasoning that is generally agreed to

not allow such mistakes. This system involves strict limits on the kind of arguments that are

allowed. Thus, when following this system, we can be sure that we have not made mistakes in

our reasoning. Further, other mathematicians can rely on our results. This chapter introduces

this system as well as how to use it to find and write down proofs.

� Chapter Goals

In this chapter, we discuss how statements are proven in mathematics. This includes

• Proof systems in general

• The proof system used for first-order logic

• How proofs are communicated among mathematicians

In the end, you will be able to write proofs yourself and read proofs written by others.

61

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

3.1 A Proof System for Propositional Logic

Usually, proofs are written in natural language, interspersed with some formal mathematical

notation. When written like this, proofs have a rather peculiar style of writing, as they assume a

reader proficient in reading and writing proofs. People not familiar with this kind of language

usually miss what the proof is actually doing, why it’s true, or where there might be errors in it.

Put differently, a natural language proof merely describes the actual logical argument that makes

the proof work. We must understand the actual way a proof is built before we can start to prove

statements on our own.

3.1.1 What Makes a Proof

Consider the statement 𝑃 ∧𝑄 → 𝑄 ∧ 𝑃 . We have already seen that this statement is true, and by

now, you should be able to recognize this rather quickly without iterating all possible evaluations

of 𝑃 and 𝑄 .

We now look at a proper natural language proof of that statement. Afterwards, we will analyze

that proof in-depth to understand its structure.

Lemma 3.1. 𝑃 ∧𝑄 → 𝑄 ∧ 𝑃

Proof. To show the implication 𝑃 ∧𝑄 → 𝑄 ∧ 𝑃 , we can assume that 𝑃 ∧𝑄 is true because if it

were false, the implication would be trivially true. Since 𝑃 ∧𝑄 is assumed, we also know that

both 𝑃 and 𝑄 on their own are true. So 𝑄 ∧ 𝑃 remains to show. We show both sides separately:

𝑄 : 𝑄 holds since we have previously assumed it.

𝑃 : 𝑃 similarly holds since we have previously assumed it. □

b Checkpoint 3.2

We encourage you to read this proof several times. Does it convince you that the lemma it

is supposed to prove is actually true?

How is the proof structured? Are there several individual steps you can pick out? What

does each of the steps do?

Notice that the conjunctions 𝑃 ∧𝑄 and 𝑄 ∧ 𝑃 are used entirely differently. What is the

difference? Does it “feel right” to use them in that way?

Now, that proof was very verbose. Usually, we do not expect you to be that verbose when writing

proofs. In fact, most mathematicians would consider the statement itself “obvious” or “trivial,”

and not even bother writing a proof at all. However, written out like this, the proof demonstrates

most of the action happening during proofs in general:

A mathematical proof works by maintaining a set of assumptions towards a specific goal. During

the proof, the goal and the assumptions might be changed in several ways. The goal and the

assumptions define the next steps that can be taken. Let’s analyze how both are manipulated

during the above proof:

62

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

1. Initially, the goal is 𝑃 ∧𝑄 → 𝑄 ∧ 𝑃 . Our collections of assumptions is empty.

2. We use the fact that the goal is an implication to assume 𝑃 ∧𝑄 . The goal changes to 𝑄 ∧ 𝑃 ,
the assumptions are 𝑃 ∧𝑄 .

3. Looking at the assumption 𝑃 ∧ 𝑄 , we can assume that either side is also true. The goal

remains𝑄∧𝑃 , the assumptions are now 𝑃∧𝑄 , 𝑃 , and𝑄 . Note that our previous assumptions

remain.

4. Since the goal is 𝑄 ∧ 𝑃 , we can show both sides of the conjunction separately. We get two

new goals and the assumptions in both are the same as we had before.

4.1. One goal is 𝑄 . The assumptions are 𝑃 ∧𝑄 , 𝑃 , and 𝑄 .
4.1.1. Since 𝑄 is both the goal and an assumption, we are done.

4.2. The other goal is 𝑃 . The assumptions are 𝑃 ∧𝑄 , 𝑃 , and 𝑄 .
4.2.1. Since 𝑃 is both the goal and an assumption, we are done.

When writing a proof, at any point, we should precisely know what our goal is and what our

assumptions are. This is also called the proof state. Conversely, reading a proof involves figuring
out what the goal and the assumptions were at each step, and how the original author manipulated

them.

So, what are goals and assumptions, actually? The goal is the formula we are currently trying

to prove. The assumptions are formulas we “know” or rather assume to be true at the current

state. What goals are provable highly depends on the current assumptions: At the end of the

example proof above, we could prove 𝑃 , because 𝑃 was an assumption. But on its own, without

any assumptions, 𝑃 is not provable. This should not be surprising since 𝑃 on its own is not true

in all universes. During our proof, we try to expand our assumptions to figure out more and more

“true” statements. In the end, this hopefully concludes with us being able to show that our goal is

a true statement.

To recapitulate, let us again write down the states during our example proof, but now with our

new notation:

1. No assumptions, goal is 𝑃 ∧𝑄 → 𝑄 ∧ 𝑃

2. 𝑃 ∧𝑄 is assumed, the goal is 𝑄 ∧ 𝑃

3. 𝑃 , 𝑄 , and 𝑃 ∧𝑄 are all assumptions, the goal is 𝑄 ∧ 𝑃

4.1. 𝑃 , 𝑄 , and 𝑃 ∧𝑄 are all assumptions, 𝑄 is the goal

4.2. 𝑃 , 𝑄 , and 𝑃 ∧𝑄 are all assumptions, 𝑃 is the goal

You might notice that we had more steps before. This is because previously, we did not simply

describe what the proof state was at every point. We also argued why we were allowed to go

from one state to next and why we were done at the end. Now that we know which states a proof

consists of, we can discuss the “moves” which allow us to move from one state to the next.

The proof above is already detailed enough so that each step is atomic. The notion of an atomic

step is important: every proof can be decomposed into a sequence of simple atomic steps, which

63

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

can not be divided further. There only is a small number of different kinds of atomic steps, or proof
rules. We continue by discussing these rules. For now, we use these rules very explicitly, one after

the other, in order to understand how a proof is built. Later on, when writing proofs in natural

language, we might use several rules at once. But before we can do so, we must understand the

individual rules, and how they can be combined with each other.

So, the first and easiest rule is the one we used for concluding our proof. Remember how we

finally managed to show 𝑄 :

𝑄 holds since we have previously assumed it.

The rule we used here is called the Assumption rule:

Assumption: To prove 𝜑 , have 𝜑 in the assumptions.

So, this rule tells us that we can prove a formula 𝜑 if it is in the assumptions. 𝜑 here is a meta-

variable, meaning that this rule can be used to prove any formula, as long as that specific formula

is part of the assumptions.

It is important to think about why the Assumption rule can be used without causing problems,

like allowing us to prove false statements. Formally, a rule that can be used without causing

problems is called sound. Assumption is sound since assumptions are formulas we already

consider to be true, and we want to show that the goal is true, which it must be if it also appears

in our assumptions.

For every rule we learn, we must make sure that it is sound. Otherwise, if we use a wrong rule, we

might be able to prove formulas which are not actually true, which would make proving things

pointless. The nice idea about the rules we lay down now is that we only need to think about

why they are correct once. In fact, if you trust us, you do not need to think about this at all. As

long as you stick to these rules, you will not prove anything invalid.

Working backwards through our proof, we next describe the rule that allowed us to prove both

sides of the conjunction separately:

AndIntro: To prove 𝜑 ∧𝜓 , prove 𝜑 and𝜓 separately.

This rule codifies the move we did when we proved the conjunction 𝑃 ∧𝑄 by proving each side

on its own. Again, 𝜑 and𝜓 are meta-variables, so this rule can be used to prove any conjunction.

In the above example, we used it with 𝜑 B 𝑃,𝜓 B 𝑄 . The rule is sound since, if we can prove

that both 𝜑 and𝜓 hold, then clearly their conjunction must also hold.

Unlike the Assumption rule, this rule does not conclude the proof. This means that the proof is

not done after using this rule. Instead, we get two new proof obligations. This means that we

have two new goals (or maybe the same goal, but under different assumptions), for which we

must continue building a proof.

Note that the rule does not mention the assumptions. In general, when a rule does not mention

the assumptions, they remain unchanged and get carried over to new proof obligations. So, we

have two new proof obligations, each of which has a new goal, but both still have the same

assumptions.

The next rule actually changes the assumptions. Here it is:

64

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

ImplIntro: To prove 𝜑 → 𝜓 , prove𝜓 while assuming 𝜑 .

In this rule, we prove an implication 𝜑 → 𝜓 by assuming 𝜑 . This means that we add 𝜑 to our

assumptions. Then, we continue to prove𝜓 under our new assumptions (which are the old ones

in addition to 𝜑).

We use this rule at the very beginning of the proof of 𝑃 ∧ 𝑄 → 𝑄 ∧ 𝑃 , where we assume that

𝑃 ∧ 𝑄 is true and continue to prove 𝑄 ∧ 𝑃 . There, we also already argued why this rule is in

general: We know that 𝜑 is either true or false. If it is false, then the implication is true since the

precondition is false. So, the only interesting case is when 𝜑 is true. Then,𝜓 must also be true. So

𝜓 is the new proof obligation, but since we know 𝜑 must be true, we can assume it.

This rule hints at a deep connection between implication and assumptions, which we discuss

later.

We have now described three out of four rules used in the proof above. One remains:

AndElim: If 𝜑 ∧𝜓 is assumed, also assume 𝜑 and𝜓 .

This rule does not read like the previous rules, since it does not start with “to prove.” It also does

not mention a goal. This is because this formula does not care about the goal—it can be used

on any goal and does not change it. Instead, it manipulates assumptions. The rule allows us to

analyze the formulas we previously had assumed: if we have assumed a conjunction 𝜑 and 𝜓 ,

then this rule tells us that we can also assume 𝜑 and𝜓 separately, so it adds two new assumptions.

Importantly, it does not remove the assumption 𝜑 ∧𝜓 .1

If we wanted to reformulate this rule to sound like the others, we might write:

Alternate AndElim: To prove 𝜒 when 𝜑 ∧𝜓 is assumed, prove 𝜒 also assuming 𝜑 and𝜓 .

By using the meta-variable 𝜒 for the goal, we make it explicit that this rule does not change the

goal. Lastly, we need to argue why this rule can be used: If 𝜑 ∧𝜓 is assumed, we know that this

conjunction is true. The only way for a conjunction to be true is by both sides being true. Thus,

we can assume either side individually.

Using our rules, we can now write down the initial natural-language proof like this.

1. No assumptions, goal is 𝑃 ∧𝑄 → 𝑄 ∧ 𝑃 , continue with ImplIntro

2. 𝑃 ∧𝑄 is assumed, the goal is 𝑄 ∧ 𝑃 , continue with AndElim on 𝑃 ∧𝑄

3. 𝑃 , 𝑄 , and 𝑃 ∧𝑄 are all assumptions, the goal is 𝑄 ∧ 𝑃 , continue with AndIntro

4.1. 𝑃 ,𝑄 , and 𝑃 ∧𝑄 are all assumptions,𝑄 is the goal, conclude with Assumption using𝑄

4.2. 𝑃 , 𝑄 , and 𝑃 ∧𝑄 are all assumptions, 𝑃 is the goal, conclude with Assumption using 𝑃

1
We could have formulated the rule so that it removes the existing assumption. This would make things more

complicated later on. Since we have not done so, the rule as is now can be used several times on the same assumption.

65

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

This proof is the same proof as the original natural language proof. It uses the same rules, in the

same order. However, it is much more explicit than the natural language one. It shows the proof

state at each step and makes each rule explicit.

Note that for the AndElim rule, we additionally noted the assumption we used that rule on.

Especially for rules like AndElim, which only manipulate the assumptions, it can be very hard to

keep track of what is happening when the context becomes large. A valid proof must thus not

only mention the rules but also make clear how the meta-variables are instantiated. In practice,

for rules like ImplIntro, this becomes obvious by looking at the goal. However, as a general

convention, whenever a rule uses assumptions, you should write down the precise assumption

used.

For Assumption, this seems redundant, since the assumption is precisely the goal. You will see

why the convention of always explicitly state the used assumptions is necessary once your proofs

become larger.

3.1.2 Proof Tables

If we look at the proof we wrote down at the end of the previous sub-chapter, we can see that it is

very verbose. We have to write down the context at each step, and since the context only gets

larger, this can quickly become problematic. The way to fix this is by inventing new notation.

Concretely, we now introduce proof tables, which avoid having to explicitly copy everything all

the time.

Proof tables are tables containing the successive proof states, as well as the rules allowing us to

transition between them. A proof table has three columns:

Context Goal Rule

For now, the context column contains our assumptions, while the goal column contains the

current goal. The rule column will denote which rule we used to move from one proof state to

the next.

Let’s look at the example from before:

Context Goal Rule

𝑃 ∧𝑄 → 𝑄 ∧ 𝑃 ImplIntro

H1 : 𝑃 ∧𝑄 𝑄 ∧ 𝑃 AndElim H1

H2 : 𝑃

H3 : 𝑄
𝑄 ∧ 𝑃 AndIntro

Context Goal Rule

𝑄 Assumption H3

Context Goal Rule

𝑃 Assumption H2

When you compare this to the previous attempt, you might see some similarities. We start with an

empty context, and the goal is the formula we want to prove. Next, we apply the rule ImplIntro

and get to the next state. We have the new assumption and the new goal.

66

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

A new feature is that our assumptions get names. This will make using them in rules much easier,

and also allows us to better keep track of them in general.

We next use the assumption we have just obtained in AndElim. This leads us to the next new

feature: the context cell in that row only contains the new assumptions, instead of all of them. We

try to save space by recognizing that our context never gets smaller, so we can always say that

our context implicitly includes everything in the lines above. This avoids repeating the context

every time, however, we must remember to look at the context above.

So far, this seems reasonable. The next rule, AndIntro, is a bit more complicated: Our table splits

up into two new tables. This is because AndIntro has two proof obligations: the left and the

right side of the conjunction. Unfortunately, tables can not be split nicely, so we start two new

tables. We use arrows to connect the new tables to the previous table, which was split. This is

important because the context is inherited from the old table: When we next use the Assumption

rule, we can also use every assumption that we introduced before the split. If we had introduced

more assumptions after the split, we would of course allowed to use them, too. What we are not

allowed to do is use assumptions from the left table in the right table, so while both tables start

out with the same assumptions inherited from their origin table, they continue independently. At

the end, we use a double bottom line to denote that we are done.

We now denote e.g. which assumption the AndElim rule was applied to using the names in-

troduced before. The procedure for checking the proof, including checking that all claimed

assumptions are actually part of the assumptions, remains the same, however, we now know pre-

cisely which hypotheses are used in any rules. Remember that for checking whether a referenced

assumption is in fact in the context, you can go upward in a table, or follow the arrows backwards.

Note that the names of our hypotheses can be chosen arbitrarily, but in order to avoid confusion

later, we stick to names always starting with a capital H (for hypothesis). Note that no two

hypotheses may share a name.
2

Context Goal Rule

𝑃 ∧𝑄 → 𝑄 ∧ 𝑃 ImplIntro

H1 : 𝑃 ∧𝑄 𝑄 ∧ 𝑃 AndIntro

Context Goal Rule

𝑄 AndElim H1

H2 : 𝑃

H3 : 𝑄
𝑄 Assumption H3

Context Goal Rule

𝑃 AndElim H1

H2 : 𝑃

H3 : 𝑄
𝑃 Assumption H2

Figure 3.3: A slightly different proof of 𝑃 ∧𝑄 → 𝑄 ∧ 𝑃

A slightly different proof of the same formula is shown in Figure 3.3. The difference there is that

we first decide to prove both sides of the conjunction, and only then look at the context to figure

out that we know either side is already true. While this proof is longer than the other one (we

have to use AndElim twice), it is still correct.

2
You can have two hypotheses with the same name in different sub-proofs, where they do not interfere with each

other. This is fine and sometimes useful, but it can also lead to confusion. In our examples, we sometimes reuse names

when the assumptions are actually the same in different subproofs, but avoid doing so otherwise.

67

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Our new language for writing down proofs can also be used to specify the proof rules. This is

how we denote the Assumption rule:

Context Goal Rule

𝜑 𝜑 Assumption

This means that as long as 𝜑 is both the goal and anywhere in the context, this rule allows us to

finish the proof. So, the context line has a slightly different meaning when we define a rule since

we in particular do not require that 𝜑 was introduced by the rule used immediately prior. The

double bottom denotes that this rule concludes the proof. Also, when specifying our rules, we do

not care about the names of assumptions. Instead, we rely on the convention that if a rule uses

assumptions (like 𝜑), then, when using that rule, we must specify which specific assumption was

used here.

Next, the ImplIntro rule:

𝜑 → 𝜓 ImplIntro

𝜑 𝜓

In this rule, we make no requirements about the context. All we care about is that our goal has

a particular shape. Also, the ImplIntro rule does not finish the proof, so it introduces a new

obligation below it. This rule extends the context, adding 𝜑 to it, and also changes the goal to𝜓 .

We continue with the AndElim rule:

𝜑 ∧𝜓 𝜒 AndElim

𝜑

𝜓
𝜒

By now, you should be able to explain this rule: It expects 𝜑 ∧𝜓 somewhere in the context, and

then adds 𝜑 and𝜓 to the context. It does not change the goal.

Finally, AndIntro:

𝜑 ∧𝜓 AndIntro

𝜑 𝜓

This rule has two subgoals, so we split our table up. In one, 𝜑 is the new goal, in the other, it is𝜓 .

The context remains unchanged.

Finally, we can state all the rules for propositional logic:

𝜑 𝜑 Assumption ⊤ TruthIntro ⊥ 𝜒 FalsityElim

𝜑 ∧𝜓 𝜒 AndElim

𝜑

𝜓
𝜒

𝜑 ∧𝜓 AndIntro

𝜑 𝜓

68

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

𝜑 ∨𝜓 𝜒 OrElim

𝜑 𝜒 𝜓 𝜒

𝜑 ∨𝜓 OrIntro1

𝜑

𝜑 ∨𝜓 OrIntro2

𝜓

𝜑 → 𝜓 𝜓 ImplApply

𝜑

𝜑 → 𝜓

𝜑
𝜒 ImplSpecialize

𝜓 𝜒

𝜑 → 𝜓 ImplIntro

𝜑 𝜓

¬𝜑 𝜒 NegElim

𝜑 → ⊥ 𝜒

¬𝜑 NegIntro

𝜑 ⊥

𝜒 Assert 𝜑

𝜑 𝜑 𝜒

𝜒 ExcludedMiddle 𝜑

¬𝜑 𝜒 𝜑 𝜒

Okay, let’s discuss these rules. First, we can notice some patterns: For each connective of

propositional logic, there are (usually) introduction and elimination rules. Introduction rules

allow us to prove a formula. Elimination rules allow us to use an assumption. Introduction rules

do not care about what is in the context. Elimination rules (usually) do not affect the goal.

Note that an introduction rule also seems to “eliminate” the goal into smaller sub-goals. However,

this is not actually what happens, and thinking about introduction rules like this makes it easy

to confuse them with elimination rules. What an introduction rule actually does is allow us to

gradually build up a proof from proofs of sub-terms: If we have proofs of 𝜑 and𝜓 , the AndIntro

rule allows us to introduce the operator ∧ and yields a proof of 𝜑 ∧𝜓 .
Conversely, the elimination rules actually “deconstruct” a proof of a combined formula (like

𝜑 ∧𝜓). In a way, they allow us to break apart the fact that a formula holds into facts about the

sub-formulas of that formula.

Introduction rules are also sometimes called “construction rules.” Elimination rules can also be

called “deconstruction” or “destruction” rules. Here, we chose the more traditional names.

Additionally, we have three extra rules that do not correspond to any logical connective. Let’s

start with these.

The first is Assumption, which we already know. The next is Assert, which allows us to create

an arbitrary subgoal. This subgoal must first be proven, but we can then use this as an assumption

later on. This allows us to organize our proofs by first finding some simpler goal, then working

towards it and finally using it to proceed in the remainder of the proof.

The last unusual rule is ExcludedMiddle. This rule is important: It allows us to use the fact that

in propositional logic, everything is either true or false. So, this rule is just a formulation of the

law of excluded middle.

With this out of the way, let’s focus on the rules for logical connectives. It makes sense to think

of these rules as answers to the questions “How do you prove a conjunction/disjunction/...?” and

“How do you use a ...?” For conjunction, we know we prove a conjunction by proving both sides

independently. Similarly, we can use a conjunction to extract the knowledge that both sides of it

are true.

69

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Disjunction works similarly. We have two introduction rules: OrIntro1 allows us to prove a

disjunction using the left side, while OrIntro2 allows us to prove it using the right side. This

corresponds to our intuitive understanding of introduction: It is true as soon as either side is true.

You might wonder why there is no rule that allows us to prove a disjunction by proving both

sides. The answer is that this is not necessary: If both sides are true, we can use either of our

existing introduction rules and just prove the side that is easier.

The elimination rule for disjunction performs a case distinction. We know that at least one of

the sides is true, but we don’t know which. Therefore, we have to prove our goal twice, once

assuming the left side is true and once assuming the right side is true.

The introduction rule for ⊤ just says that ⊤ is always true. There is no elimination rule for ⊤,
because we can not really use ⊤ – we gain no new information from having ⊤ in our assumptions.

The rule for ⊥ is notoriously hard to understand. We know that ⊥ is always false. Thus, its

stands to reason that there is no proof of ⊥. However, if we have assumed ⊥, we are in a situation

quite similar to proving an implication where the precondition is false. When that happens in

an implication, the whole implication is true, and for similar reasons, we also allow proving any

goal when we have ⊥ in our assumptions. This rule is commonly known as ex falso quodlibet
(Latin for: “from falsity, everything follows”). We discuss this further when we look at proofs by

contradiction.

The rules for negation parallel our rule for ⊥. The introduction rule says that if we want to prove

¬𝜑 , we can assume 𝜑 to prove ⊥. The only way to prove ⊥ is using FalsityElim or Assumption,

thus it is only provable if 𝜑 itself is false. The elimination rule makes this relation even more

explicit: It simply converts an assumption ¬𝜑 into one of shape 𝜑 → ⊥. This works, since both
are equivalent in our logic. So, since we already know how to use implication and ⊥, we can use

those rules to also work with negation. In fact, sometimes people consider ¬𝜑 to just be syntactic

sugar for 𝜑 → ⊥.
The implication introduction rule was already discussed. Interestingly, here, we have two elimi-

nation rules: The first, ImplApply, allows us to prove a goal𝜓 by proving 𝜑 , as long as we know

that 𝜑 → 𝜓 . The second, ImplSpecialize, allows us to add the consequence𝜓 of an implication

𝜑 → 𝜓 to the context as long as we already know that 𝜑 is true. In fact, we only need one of

the rules, as the other can be derived using Assert. The ImplSpecialize rule is also known as

modus ponens, which states the core idea behind an implication: If 𝜑 → 𝜓 and 𝜑 are true, we

can derive𝜓 .

3.1.3 Example Proofs

Our proofs are a so-called formal system. This means that we have tried to use formal mathematical

language to make everything very precise. We did this by presenting a lot of rules.

This makes formal systems easy to present: Just write down all the rules. However, learning a

new formal system is not as easy. Just learning all the rules by heart will not be sufficient and is

also not very practical. Instead, we recommend that you practice using the rules until you get a

“feeling” for how they can be used. This way, you don’t even have to remember the rules, since

they will eventually feel so natural that you can just re-derive them on the spot.

Thus, we will now showcase several proofs using our system so that you can get a feel for how

the rules are used. Again, just learning the examples by heart will not be sufficient. Instead, try

70

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

practicing writing down these proofs yourself, and then comparing them with the example.

So, let’s start. We have already seen a proof that conjunction is commutative. A proof of the same

property for disjunction can be found in Figure 3.4.

Context Goal Rule

𝑃 ∨𝑄 → 𝑄 ∨ 𝑃 ImplIntro

H1 : 𝑃 ∨𝑄 𝑄 ∨ 𝑃 OrElim H1

Context Goal Rule

H2 : 𝑃 𝑄 ∨ 𝑃 OrIntro2

𝑃 Assumption H2

Context Goal Rule

H3 : 𝑄 𝑄 ∨ 𝑃 OrIntro1

𝑄 Assumption H3

Figure 3.4: A proof table using OrElim

Figure 3.5 presents another example, which has implications as assumptions.

Context Goal Rule

(𝑃 → 𝑄 → 𝑅) → (𝑃 ∧𝑄 → 𝑅) ImplIntro

H1 : 𝑃 → 𝑄 → 𝑅 𝑃 ∧𝑄 → 𝑅 ImplIntro

H2 : 𝑃 ∧𝑄 𝑅 AndElim H2

H3 : 𝑃

H4 : 𝑄
𝑅 ImplSpecialize H1 H3

H5 : 𝑄 → 𝑅 𝑅 ImplApply H5

𝑄 Assumption

Figure 3.5: A proof table using ImplIntro

For yet another example, using implications and disjunctions, see Figure 3.6.

Context Goal Rule

(𝑃 ∨𝑄 → 𝑅) → (𝑃 → 𝑅) ∧ (𝑄 → 𝑅) ImplIntro

H1 : 𝑃 ∨𝑄 → 𝑅 (𝑃 → 𝑅) ∧ (𝑄 → 𝑅) AndIntro

Context Goal Rule

𝑃 → 𝑅 ImplIntro

H2 : 𝑃 𝑅 ImplApply H1

𝑃 ∨𝑄 OrIntro1

𝑃 Assumption H2

Context Goal Rule

𝑄 → 𝑅 ImplIntro

H3 : 𝑄 𝑅 ImplApply H1

𝑃 ∨𝑄 OrIntro1

𝑄 Assumption H3

Figure 3.6: A proof table using implications and disjunctions

The rules for truth and falsity are rather straightforward. We first consider Figure 3.7, which

demonstrates how truth is proven. This proof should not be too surprising.

Now, let’s turn to a proof of a closely related statement in Figure 3.8, which uses falsity elimination.

71

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Context Goal Rule

𝑃 → 𝑃 ∧ ⊤ ImplIntro

H1 : 𝑃 𝑃 ∧ ⊤ AndIntro

Context Goal Rule

𝑃 Assumption H1

Context Goal Rule

⊤ TruthIntro

Figure 3.7: A proof table proving truth

Context Goal Rule

𝑃 ∨ ⊥ → 𝑃 ImplIntro

H1 : 𝑃 ∨ ⊥ 𝑃 OrElim H1

Context Goal Rule

H2 : 𝑃 𝑃 Assumption H2

Context Goal Rule

H3 : ⊥ 𝑃 FalsityElim H3

Figure 3.8: A proof table using falsity elimination

In this proof, we considered the two possible cases of 𝑃 ∨⊥. Either 𝑃 holds, or ⊥. The first case is
easy. In the case that ⊥ holds, we get ⊥ as an assumption. Intuitively, this means that the case

we are currently in is “impossible.” While it came up in our case distinction, it can not actually

happen “in practice,” because ⊥ is never true. So, we basically just stop with our proof. This is

exactly what the FalsityElim rule does: It allows us to stop the proof since whatever we are

trying to prove right now is within an unreachable context.

Of all the rules in our system, the FalsityElim rule is often considered the most confusing rule,

so if you feel confused by that proof, that is perfectly normal.

To finish off this series of examples, let’s do a proof using the ExcludedMiddle rule. This one, to

be found in Figure 3.9, looks large and rather complicated There certainly is a lot going on there.

Importantly, three rules are used for the first time.

ExcludedMiddle is used near the beginning. Here, ExcludedMiddle allows us to show that

the implication 𝑃 → 𝑄 either holds or does not hold. We need to handle these two cases, and

the right one (where 𝑃 → 𝑄 does not hold) is the more interesting one. In this, we know that

the right side of the disjunction must be true. This allows us to introduce a 𝑃 , so we can deduce

𝑄 ∨ 𝑅 from our initial assumption. Now, the intuition is that if this 𝑄 ∨ 𝑅 is 𝑄 , then our initial

implication was just 𝑃 → 𝑄 , but we already know that this is false. So, if after case-analyzing

this, we get 𝑄 , we are able to use our previous assumption that 𝑃 → 𝑄 does not hold.

Here, the rule NegElim appears, which we have also never used before. NegElim here allows

us to get an implication with ⊥ as the post-condition. Our next steps are to get access to that ⊥
so that we can apply FalsityElim. The overall principle here is that of a proof by contradiction,

which we explain shortly.

When doing so, we run into a somewhat unpleasant situation. We have an implication towards ⊥
and would like to use it. However, ImplApply can not be used, since our goal is not ⊥. Similarly,

72

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Context Goal Rule

(𝑃 → 𝑄 ∨ 𝑅) → (𝑃 → 𝑄) ∨ (𝑃 → 𝑅) ImplIntro

H1 : 𝑃 → 𝑄 ∨ 𝑅 (𝑃 → 𝑄) ∨ (𝑃 → 𝑅) ExcludedMiddle 𝑃 → 𝑄

Context Goal Rule

H2 : 𝑃 → 𝑄
(𝑃 → 𝑄)
∨(𝑃 → 𝑅) OrIntro1

𝑃 → 𝑄 Assumption H2

Context Goal Rule

H3 : ¬(𝑃 → 𝑄) (𝑃 → 𝑄)
∨(𝑃 → 𝑅) OrIntro2

𝑃 → 𝑅 ImplIntro

H4 : 𝑃 𝑅 ImplSpecialize H1 H4

H5 : 𝑄 ∨ 𝑅 𝑅 OrElim H5

Context Goal Rule

H6 : 𝑄 𝑅 NegElim H3

H7 : (𝑃 → 𝑄) → ⊥ 𝑅 Assert ⊥

Context Goal Rule

H10 : 𝑅 𝑅 Assumption H10

Context Goal Rule

⊥ ImplApply H7

𝑃 → 𝑄 ImplIntro

H8 : 𝑃 𝑄 Assumption H6

Context Goal Rule

H9 : ⊥ 𝑄 FalsityElim H9

Figure 3.9: A proof table using ExcludedMiddle, Assert, and NegElim

ImplSpecialize can not be used, since we do not have 𝑃 → 𝑄 in our assumptions. The solution is

to use Assert to introduce a helpful intermediate goal, where we can apply ImplApply.

The proof also shows another important aspect of the proof system: There are formulas that

are provable, but the proof is not direct. Here, we must cleverly apply the ExcludedMiddle

rule to figure out which side of the disjunction we should try to prove. In the second case, we

must do some work and use the assumption that ¬(𝑃 → 𝑄) to eventually reach a case where we

can derive ⊥. Finding such proofs can be very difficult, especially if one is not sure whether the

formula to be proven even is true.

Our proof system has a rather minimal number of rules. In fact, there is only one unnecessary rule.

All other rules are necessary to make the proof system complete (see Theorem 3.17). Therefore, it

is often necessary to use Assert to prove some intermediary goal, especially in order to then

apply rules like ImplSpecialize or FalsityElim.

73

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

3.1.4 Proof Strategies

Now that we are able to use the basics of our proof system, we can focus on how you actually find

these proofs. Unfortunately, this chapter can not teach this—proving is again something learned

only by repeated practice.

However, we can discuss some common strategies and patterns used in proofs.

Chasing Contradictions

When finding proofs, we often like to call ⊥ a contradiction. The main idea behind chasing

contradictions is to try to derive additional hypotheses until we reach a contradiction. In our proof

system, this means that we try to continue in our proof, adding more and more hypotheses, until

these hypotheses either allow us to derive ⊥ or, like in the proof in Figure 3.9, we can eliminate a

negation and thereby prove our goal.

This was the strategy we used in that proof—we tried to chase a contradiction by trying to collect

assumptions until we had enough assumptions to contradict ¬(𝑃 → 𝑄).
Intuitively, being able to derive ⊥ can be understood as being in an impossible situation. For

example, in our earlier proof of 𝑃 ∨⊥ → 𝑃 , we have two options: One is that 𝑃 holds, the other is

that ⊥ holds. The idea is that the right side can never be true. Yet, we still need to do our case

distinction, because this is what the rules require us to do. Thus, falsity elimination provides an

“escape mechanism” to get out of impossible proof obligations. Concretely, we use it to quickly

finish the ⊥ side of 𝑃 ∨ ⊥, since that is never true.
In the earlier example, we similarly used it after we arrived at the point where we managed to

derive 𝑄 from 𝑃 , even though ¬(𝑃 → 𝑄) was in the context. This means that deriving 𝑄 from

𝑃 should be impossible. So, to get out of the seemingly impossible case, we again use falsity

elimination.

Proof by Contradiction

Often, when proving 𝑃 , it is easier to instead assume ¬𝑃 , and try to prove a contradiction (i.e. try

to prove ⊥).
We then know that ¬𝑃 can not be true, so 𝑃 must be true.

This corresponds to the following proof rule:

𝜑 Contradiction

¬𝜑 ⊥

Before we can use this rule, we need to check that it is actually sound. For our foundational

rules, we did this by appealing to our intuition on propositional logic. Here, we can be much

more formal, and simply give a scheme that shows how to build our new rule from our already

known rules, like in Figure 3.10. There, we use our already existing rules, starting in a context

similar to the Contradiction rule. However, the proof is not done, there is an unfinished subgoal

remaining. That subgoal corresponds to the new state generated by the Contradiction rule. In

that new subgoal, we have a new hypothesis HC : ¬𝜑 , and the Contradiction rule requires us

74

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

having exactly
3
that hypothesis. Thus, the Contradiction rule is correct, since we can always

replace it with rules we are already sure are true.

𝜑 ExcludedMiddle 𝜑

Context Goal Rule

H1 : 𝜑 𝜑 Assumption H1

Context Goal Rule

HC : ¬𝜑 𝜑 Assert ⊥

Context Goal Rule

H2 : ⊥ 𝜑 FalsityElim H2

Context Goal Rule

⊥

Figure 3.10: A justification of the Contradiction rule

Notice that in this proof, there is one goal remaining. Also, that goal has access to the assumption

HC, which is exactly the assumption it is required to have by our Contradiction rule. So we

know we can use that rule because we could always replace it by the proof building block of

figure Figure 3.10.

Of course, that rule is much simpler, so you are allowed to use it everywhere from now on.

Figure 3.11 shows how to use it. That proof is worth a closer look: We can see that after three

steps, we reach the same goal we started with. However, we have picked up a crucial assumption

(H2), which we then use. We reach the goal 𝑃 ∨ ¬𝑃 a third time, but this time we have picked up

yet another assumption, namely H3, which now makes the proof very easy.

In the previous examples, we have seen that working with negation and ⊥ is tedious. It turns out

that the following rules make our lives much simpler:

¬𝜑 𝜒 NegElimApply

𝜑

𝜒 ExFalso

⊥

The first rule combines NegElim, ImplApply and Assert, relieving us of having to show a trivial

side goal separately.

3
The replacement needs to provide all the assumptions required by the new rule. If there are more assumptions,

that is fine, since we can simply not use them.

Context Goal Rule

𝑃 ∨ ¬𝑃 Contradiction

H1 : ¬(𝑃 ∨ ¬𝑃) ⊥ NegElim H1

H2 : (𝑃 ∨ ¬𝑃) → ⊥ ⊥ ImplApply H2

𝑃 ∨ ¬𝑃 OrIntro2

¬𝑃 NegIntro

H3 : 𝑃 ⊥ ImplApply H2

𝑃 ∨ ¬𝑃 OrIntro1

𝑃 Assumption H3

Figure 3.11: A proof using Contradiction

75

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

The second rule makes using the “escape mechanism” easier. If we, at any point, notice that our

current situation is contradictory, we can immediately proceed to prove ⊥.

b Checkpoint 3.12

Construct proof trees justifying these rules!

Equivalence Chains

So far, we have not touched upon the logical equivalence 𝑃 ↔ 𝑄 .

Note that 𝑃 ↔ 𝑄 is just notation for (𝑃 → 𝑄) ∧ (𝑄 → 𝑃). This means that we can always prove

an equivalence by using AndIntro and then proving both directions separately. In most cases,
this is how you should prove an implication.

While this always works, it can sometimes be unnecessarily tedious. Proving that 𝑃 ↔ 𝑄 is

often much simpler by cleverly picking some 𝑅 so that 𝑃 ↔ 𝑅 and 𝑄 ↔ 𝑅. In fact, this can

be used multiple times: To prove 𝑃 ↔ 𝑄 , we can just prove each intermediate implication in

𝑃 ↔ 𝑅1 ↔ 𝑅2 ↔ · · · ↔ 𝑅𝑛 ↔ 𝑄 holds.

We can also formulate this as a proof rule:

𝑃 ↔ 𝑅 EqivChain 𝑄

𝑃 ↔ 𝑄 𝑄 ↔ 𝑅

b Checkpoint 3.13

Construct a proof tree justifying this rule (use Assert)!

3.1.5 Metatheory

In Section 2.1, we discussed validity and satisfiability, and eventually arrived at the notion of truth

that a formula is true if it is valid.

Another suitable notion of truth is provability:

Definition 3.14 (Provability). A formula 𝜑 ∈ F0 is provable if we can construct a proof for it,
starting in the empty environment.

We have already discussed why all our proof rules hold in general. This means that each proof

rule preserves truth. Thus, whenever we have a proof of a formula, we know that this formula is

valid.

Lemma 3.15 (Soundness). If we have a proof of 𝜑 under assumptions𝜓1, . . . ,𝜓𝑛 , then the formula

(𝜓1 ∧ · · · ∧𝜓𝑛) → 𝜑

is valid.

If there are no assumptions, the formula is ⊤ → 𝜑 .

76

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Proof 4by induction on the deduction. In other words, we show something like this for every rule:

Assumption: This rule is applied to a proof state with assumptions𝜓1, . . . ,𝜓𝑛 and goal 𝜑 = 𝜓𝑘 for

1 ≤ 𝑘 ≤ 𝑛. We thus need that (𝜓1 ∧ · · · ∧𝜓𝑛) → 𝜓𝑘 , which is obvious.

AndElim: This rule is applied to a proof state with assumptions𝜓1, . . . ,𝜓𝑛 and goal 𝜒 . We have

that one assumption𝜓𝑘 = 𝜑1 ∧ 𝜑2. Further, this rule generates a new subgoal with assumptions

𝜓1, . . . ,𝜓𝑛, 𝜑1, 𝜑2 and goal 𝜒 . We can now assume, since that subgoal is proven, that (𝜓1 ∧ · · · ∧
𝜓𝑛 ∧ 𝜑1 ∧ 𝜑2) → 𝜒 . From this, we can deduce that (𝜓1 ∧ · · · ∧𝜓𝑛) → 𝜒 is valid and are done. □

Corollary 3.16. If 𝜑 is provable (under the empty environment), then it is valid.

Lemma 3.15 describes a deep connection between implication and assumptions: We can, at any

time, represent our current proof state as a formula, where all the assumptions together imply

our goal.

While we can easily show that any proven formula is valid, constructing a proof for any valid

formula is harder. It is, however, possible.

Theorem 3.17 (Completeness). If a formula 𝜑 ∈ F0 is valid, it is provable.

Proof sketch. We use Theorem 2.22 and Lemma 2.18 and get a rewriting chain which, using the

algebraic axioms of propositional logic, transforms our formula to ⊤.
We know that ⊤ is provable, and we can also prove every possible rewriting step. For this, it

suffices to show that if 𝜑 ↔ 𝜓 , then also any formula 𝜒 that contains 𝜑 is equivalent to 𝜒 , but

with some occurrences of 𝜑 replaced by𝜓 . What remains is to show that the (necessary) axioms

of propositional logic are provable, which is left as an exercise to the reader. □

Thus, we know that a formula is valid if and only if it is true. This means that we have a new

notion of truth, which coincides with the old one, while having a very different definition.

Definition 3.18 (Syntactic Truth). A formula 𝜑 ∈ F0 is syntactically true, also called deduc-
tively true, iff it is provable.

Theorem, Lemma, Corollary In this section, you have seen a theorem, a lemma, and a

corollary. All of these were statements that had a formal proof. In fact, you might wonder why we

make a difference between these three. The answer is that there is no formal difference between

them, each of them is just some statement with a proof attached.

The reason different names are used is that a theorem is usually considered more important than
a lemma. For example, formally proving the completeness theorem above is much harder than

proving the soundness lemma (which is why we only give a short sketch). It is also much more

profound.

Usually, a math textbook (like this book) is structured by first defining the relevant terms. Then,

there are several lemmas, usually in somewhat increasing difficulty, complexity, or abstractness.

Eventually, these lemmas can be combined to prove some theorems, which are the “main goal”

the textbook is aiming for, or otherwise more important than the other lemmas.

4
You are not expected to understand this proof right now.

77

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

A corollary usually is a statement that is important on its own, but which is easily proven as a

special case of the lemma or theorem immediately in front of it. For example, our Corollary 3.16

is a direct consequence of Lemma 3.15, when the list of assumptions is empty.

Finally, some authors have “proposition” as a separate category next to lemmas and theorem.

There is no real difference between propositions and lemmas. Some authors use propositions for

statements that are less important than lemmas, others make no discernible difference.

3.2 A Proof System for First-Order Logic

We now extend our proof system to first-order logic. The first important addition is that in

first-order logic, we will be working with objects.

This complicates our proof system somewhat since, during our proof, wewill not only bemanaging

the assumptions, but also the objects which we can use. Our assumptions will also be able to

reference objects.

Thus, our context will contain both assumptions and variables representing these objects. To

prevent us from confusing objects and assumptions, we write objects in lower case letters, and

propositions in upper case letters. Additionally, we can explicitly denote that something is an

object by writing x : object.

The proof system is best understand by looking at examples, like Figure 3.19.

Context Goal Rule

(∀𝑥,𝑦 : 𝑃 (𝑥,𝑦) → 𝑄 (𝑦, 𝑥))
∧ (∀𝑥 : 𝑃 (𝑥, 𝑥))
→ ∀𝑦 : 𝑄 (𝑦,𝑦)

ImplIntro

H1 :

(∀𝑥,𝑦 : 𝑃 (𝑥,𝑦) → 𝑄 (𝑦, 𝑥))
∧ (∀𝑥 : 𝑃 (𝑥, 𝑥)) ∀𝑦 : 𝑄 (𝑦,𝑦) AndElim H1

H2 : ∀𝑥,𝑦 : 𝑃 (𝑥,𝑦) → 𝑄 (𝑦, 𝑥)
H3 : ∀𝑥 : 𝑃 (𝑥, 𝑥) ∀𝑦 : 𝑄 (𝑦,𝑦) ForallIntro 𝑧

z : object 𝑄 (𝑧, 𝑧) ForallElim H2 𝑧

H4 : ∀𝑦 : 𝑃 (𝑧,𝑦) → 𝑄 (𝑦, 𝑧) 𝑄 (𝑧, 𝑧) ForallElim H4 𝑧

H5 : 𝑃 (𝑧, 𝑧) → 𝑄 (𝑧, 𝑧) 𝑄 (𝑧, 𝑧) ImplApply H5

𝑃 (𝑧, 𝑧) ForallElim H3 𝑧

H6 : 𝑃 (𝑧, 𝑧) 𝑃 (𝑧, 𝑧) Assumption H6

Figure 3.19: Our first proof of a first-order formula

The first two steps of the proof are routine: We assume two formulas since they were on the left

side of an implication. Then, we get to use the first quantifier rule, which is ForallIntro. This

rule is used to prove ∀𝑦 : 𝑄 (𝑦,𝑦). To understand this rule, as well as the other rules for quantifiers,
one should look at them through the lens of the quantifier game of Section 2.2.3. In that game,

a universal quantifier as part of a true statement meant that we could give some object to the

opponent. Now, we are trying to prove that a universal quantifier is true, so the roles are reversed,

we are the opponent, playing against the refuter. Thus, we now take an object 𝑧 for which 𝑄 (𝑧, 𝑧)
needs to be shown.

78

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Now, we get to use our assumptions. For these, we play the quantifier game as originally

introduced, since assumptions are formulas we know to be true. We play it on ∀𝑥,𝑦 : 𝑃 (𝑥,𝑦) →
𝑄 (𝑦, 𝑥), by putting in 𝑧 two times, to get 𝑃 (𝑧, 𝑧) → 𝑄 (𝑧, 𝑧), which must be true. Later, we also play

it on ∀𝑥 : 𝑃 (𝑥, 𝑥), to get 𝑃 (𝑧, 𝑧). The remainder is just using the appropriate rules for predicate

logic.

3.2.1 Rules forQuantifiers

We’ve now seen how to use the two rules for universal quantifiers. The introduction rules

correspond to playing the quantifier game as the prover, who is given an object for which they

have to continue proving the quantified property. The elimination rules correspond to playing

the quantifier game as the refuter, so we have to give the prover an object to get a proof that this

object satisfies the quantified property. We now formally state these rules, as well as the rules

for the existential quantifier. But if you know the quantifier game, you already know how to use

them.

∀𝑥 : 𝜑 ForallIntro 𝑦

y : object 𝜑 [𝑦/𝑥]

As mentioned, we introduce a universally quantified variable. This variable is the object given

to us (playing as the prover) by the refuter in the quantifier game. Since this can be any object,

all we can do is give it a name, since we do not know anything else about it. The name we give

to the object can be different from the name bound by the quantifier. In that case, we have to

change the new goal such that it refers to the name of the object given to us, which is why there

is a renaming [𝑦/𝑥]. Of course, if we use the same name, the renaming is trivial.

Ç Going Beyond: Game Semantics

Previously, the quantifier game was defined only on formulas in prenex normal form, i.e.

on formulas where all quantifiers are at the beginning.

The proof system can be thought of as an extension of the quantifier game to arbitrary for-

mulas. For this, it becomes necessary that prover and refuter switch role, since implication

forces the refuter to admit a formula, which the prover can then try to refute.

When thinking about proofs, it can be very helpful to think about these as some kind of

game against mathematics / yourself.

Such games can also be used to give a precise semantics to first-order formulas, like

Lorentzian dialogues.

∀𝑥 : 𝜑 𝜒 ForallElim 𝑡

𝜑 [𝑡/𝑥] 𝜒

This rule allows us to use a universally quantified formula. The way we use such a formula is

rather straightforward: since we know that it is valid “for all objects”, we can put in a specific

object to get that the formula holds for that object. This is also what happens in the quantifier

game: since we are using an assumption, we play as the refuter, and can give an arbitrary object

to the prover.

79

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Note that in first-order logic, we describe objects using terms 𝑡 , where 𝑡 must be a well-formed

term. Well-formed terms are terms that can use the function symbols from our signature, as well

as the variables we have added to our context as of now (e.g. by using ForallIntro in the rule

before). When we put this term 𝑡 , describing an object, into the universally quantified formula,

we get back a proof that the property holds for this object.

∃𝑥 : 𝜑 ExistsIntro 𝑡

𝜑 [𝑡/𝑥]

To prove an existentially quantified formula, we must provide a witness for which the quantified

property holds. This witness is a well-formed term 𝑡 , and the object this describes is the object

given to the refuter by the prover. Since when proving a formula, we are the prover, we have to

provide this object, which corresponds to us choosing an appropriate term 𝑡 .

∃𝑥 : 𝜑 𝜒 ExistsElim 𝑦

y : object
𝜑 [𝑦/𝑥] 𝜒

Eliminating an existential quantifier means receiving an object from the prover (since we now

play as the refuter). The situation is similar to the ForallIntro rule, except that we also know

that the object fulfills the quantified property. Again, we are able to change the name from the

one bound by the quantifier to a name chosen by us.

We previously mentioned a well-formed term. A formula or term is well-formed only if all the

first-order variables used in it are bound. We already know that quantifiers can bind variables.

However, we can now have formulas in our context that refer to objects we previously added to

that context. Therefore, the context also binds variables, which can then be used later. The rule

here is that a variable can be used only after it has been added to the context.

Also, when adding a variable to the context, it may not shadow another variable already existing

in the context. Thus, we might need to appropriately rename variables when using ForallIntro

or ExistsElim.

Finally, note that all rules above have an extra “argument.” For ForallIntro and ExistsElim,

this is the name of the variable referring to the given object. For the other rules, it is the term

describing the object given to the other player of the game.

Let’s do some example proofs. We start with one of the quantifier reordering laws.

Lemma 3.20. For any formula 𝜑 (𝑥,𝑦), we have (∀𝑥 : ∀𝑦 : 𝜑 (𝑥,𝑦)) ↔ (∀𝑦 : ∀𝑥 : 𝜑 (𝑥,𝑦))

Proof. See Figure 3.21. □

Our proof proceeds by showing both directions separately. Both proofs are almost identical. The

proof makes explicit the intuitive reasoning explaining why we can permute the quantifiers here:

We can reason that playing the quantifier game in both is equivalent since it does not matter

which one needs to be given first, as both are given “at the same time.” To make this argument

formal, we show any game played on one formula can be turned into one played with the other

formula. We do this by first receiving both objects, and then using them on the other formula in

the opposite order. This is precisely what this proof does.

80

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Context Goal Rule

(∀𝑥 : ∀𝑦 : 𝜑 (𝑥,𝑦)) ↔ (∀𝑦 : ∀𝑥 : 𝜑 (𝑥,𝑦)) AndIntro

Context Goal Rule

(∀𝑥 : ∀𝑦 : 𝜑 (𝑥,𝑦))
→ ∀𝑦 : ∀𝑥 : 𝜑 (𝑥,𝑦) ImplIntro

H1 : ∀𝑥 : ∀𝑦 : 𝜑 (𝑥,𝑦) ∀𝑦 : ∀𝑥 : 𝜑 (𝑥,𝑦) ForallIntro 𝑦

y : object ∀𝑥 : 𝜑 (𝑥,𝑦) ForallIntro 𝑥

x : object 𝜑 (𝑥,𝑦) ForallElim H1 𝑥

H2 : ∀𝑦 : 𝜑 (𝑥,𝑦) 𝜑 (𝑥,𝑦) ForallElim H2 𝑦

H3 : 𝜑 (𝑥,𝑦) 𝜑 (𝑥,𝑦) Assumption H3

Context Goal Rule

(∀𝑦 : ∀𝑥 : 𝜑 (𝑥,𝑦))
→ ∀𝑥 : ∀𝑦 : 𝜑 (𝑥,𝑦) ImplIntro

H1 : ∀𝑦 : ∀𝑥 : 𝜑 (𝑥,𝑦) ∀𝑥 : ∀𝑦 : 𝜑 (𝑥,𝑦) ForallIntro 𝑥

y : object ∀𝑦 : 𝜑 (𝑥,𝑦) ForallIntro 𝑦

x : object 𝜑 (𝑥,𝑦) ForallElim H1 𝑦

H2 : ∀𝑥 : 𝜑 (𝑥,𝑦) 𝜑 (𝑥,𝑦) ForallElim H2 𝑥

H3 : 𝜑 (𝑥,𝑦) 𝜑 (𝑥,𝑦) Assumption H3

Figure 3.21: The proof of Lemma 3.20

b Checkpoint 3.22: Non-empty universes

When we defined universes, we required that they are not empty, so that there always is at

least one object. Thus, the formula (∀𝑥 : 𝜑 (𝑥)) → ∃𝑥 : 𝜑 (𝑥) is true, since we can always

find a witness, because otherwise the universe would be empty.

If you try to prove this in our proof system, you will see that is impossible. This is because

the proof system does not actually internalize the rule that the universe is not empty. Thus,

if we were to change the definition of universes to also allow the empty universe, the proof

system still works.

The following rule internalizes that the universe is not empty:

𝜑 UniverseNotEmpty 𝑥

x : object 𝜑

How does this rule work? Can you now prove the above formula?

3.2.2 Rules for Equality

So far, we can only use our objects to put them back into assumptions. Notably, we do not yet

support reasoning about equality. We fix this now.

We have previously said that equality 𝑎 = 𝑏 means that 𝑎 and 𝑏 describe the same object. This

81

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

definition is not really useful, since it does not tell us what we can do with a proof that such

objects are the same, or how we can construct one. We focus on how we can prove that two

objects are the same first.

𝑡 = 𝑡 EqalsIntro

This rule tells us that the object described by a term 𝑡 (which must be well-formed) is the same

object as the one described by 𝑡 , which makes sense because 𝑡 can not describe more than one

object. It also is the only direct way to prove equality. The principle behind this rule is Reflexivity,
that is, any object is equal to itself.

However, since equality is very hard to prove, it is a very powerful connective. In particular, we

have the following elimination rule.

𝑡1 = 𝑡2 𝜒 EqalsElim

𝜒 ′

where 𝜒 ′ is 𝜒 , but some occurrences of 𝑡1 are replaced by 𝑡2.

This rule describes the substitutive property of equality: Whenever 𝑡1 and 𝑡2 are equal, we can

replace one with the other. Somewhat remarkably, this works within arbitrary sub-expressions.

Let’s use this to show that equality is symmetric.

Lemma 3.23 (Symmetry of Equality). ∀𝑥,𝑦 : 𝑥 = 𝑦 → 𝑦 = 𝑥

Proof. See Figure 3.24. □

Context Goal Rule

∀𝑥,𝑦 : 𝑥 = 𝑦 → 𝑦 = 𝑥 ForallIntro 𝑥

x : object ∀𝑦 : 𝑥 = 𝑦 → 𝑦 = 𝑥 ForallIntro 𝑦

y : object 𝑥 = 𝑦 → 𝑦 = 𝑥 ImplIntro

H1 : 𝑥 = 𝑦 𝑦 = 𝑥 EqalsElim H1

𝑦 = 𝑦 EqalsIntro

Figure 3.24: The proof of Lemma 3.23

In the proof, we can replace 𝑥 with 𝑦 in the goal 𝑦 = 𝑥 since 𝑥 = 𝑦 is assumed. We also call

this rewriting with 𝑥 = 𝑦. Note that we can not replace 𝑦 with 𝑥 , since our EqalsElim rule is

written so that the left side (𝑥) is replaced by the right side.

As we have seen, this is a silly restriction. We can thus add the following derived rule, which

works backwards.

𝑡1 = 𝑡2 𝜒 EqalsElim←
𝜒 ′

where 𝜒 ′ is 𝜒 , but with some occurrences of 𝑡2 replaced by 𝑡1.

Similarly, we can show that equality is transitive.

82

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Lemma 3.25 (Transitivity of Equality). ∀𝑥,𝑦, 𝑧 : 𝑥 = 𝑦 → 𝑦 = 𝑧 → 𝑥 = 𝑧

Proof. See Figure 3.26. □

Context Goal Rule

∀𝑥,𝑦, 𝑧 : 𝑥 = 𝑦 → 𝑦 = 𝑧 → 𝑥 = 𝑧 ForallIntro 𝑥

x : object ∀𝑦, 𝑧 : 𝑥 = 𝑦 → 𝑦 = 𝑧 → 𝑥 = 𝑧 ForallIntro 𝑦

y : object ∀𝑧 : 𝑥 = 𝑦 → 𝑦 = 𝑧 → 𝑥 = 𝑧 ForallIntro 𝑧

z : object 𝑥 = 𝑦 → 𝑦 = 𝑧 → 𝑥 = 𝑧 ImplIntro

H1 : 𝑥 = 𝑦 𝑦 = 𝑧 → 𝑥 = 𝑧 ImplIntro

H2 : 𝑦 = 𝑧 𝑥 = 𝑧 EqalsElim H1

𝑦 = 𝑧 EqalsElim← H2

𝑦 = 𝑦 EqalsIntro

Figure 3.26: The proof of Lemma 3.25

That proof uses both variants of the EqalsElim rule. First, 𝑥 is replaced by 𝑦, as 𝑥 = 𝑦. Then 𝑧 is

replaced by 𝑦, as 𝑦 = 𝑧, by reading the equality the other way around.

b Checkpoint 3.27

There is a proof of Lemma 3.25 that only uses EqalsElim once. Can you find it?

Here are two more rules we will need:

𝜒 Axiom

𝜑 𝜒

𝜑 is an axiom of our theory

𝜒 Lemma

𝜑 𝜒

𝜑 was proven in a separate lemma

The second rule, Lemma, is merely so that we can structure our proofs and make them easier to

understand. We could always replace it by an application of Assert, and then re-roll the proof of

the original lemma. Since the resulting proofs would be both large and redundant, we instead

introduce this rule. When using the Lemma rule, one should always state which lemma is used.

Typically, this is done by naming or numbering all lemmas, like for instance in this book.

The Axiom rule allows us to define provability modulo a theoryM. With it, we are able to

use the axioms of our theory. Thus, when proving a formula using that rule, we are no longer

showing that this formula is provable in general, but only that it is provable modulo some theory.

We now do some examples in the theory of natural numbers, as introduced in appendix A. This

means that we can use all the laws listed in that appendix.

Lemma 3.28 (≤ is reflexive). ∀𝑥 : 𝑥 ≤ 𝑥

Proof. See Figure 3.29. □

You might be confused how we can apply ExistsIntro to a goal of shape 𝑥 ≤ 𝑥 . The answer
is that 𝑥 ≤ 𝑦 is defined (Definition A.7) as ∃𝑘 : 𝑦 = 𝑥 + 𝑘 , and thus the rule is applicable. This

can be confusing, as we usually do not remember all definitions when reading proofs. Thus, for

83

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Context Goal Rule

∀𝑥 : 𝑥 ≤ 𝑥 ForallIntro 𝑥

x : object 𝑥 ≤ 𝑥 ExistsIntro 0

𝑥 = 𝑥 + 0 Axiom

A1 : ∀𝑛 : 𝑛 + 0 = 𝑛 𝑥 = 𝑥 + 0 ForallElim A1 𝑥

H2 : 𝑥 + 0 = 𝑥 𝑥 = 𝑥 + 0 EqalsElim H2

𝑥 = 𝑥 EqalsIntro

Figure 3.29: The proof of Lemma 3.28

readability, we sometimes want to explicitly unfold definitions. We denote this by Defn. Using

this, the proof becomes much more readable, as Figure 3.30 shows.

Context Goal Rule

∀𝑥 : 𝑥 ≤ 𝑥 ForallIntro 𝑥

x : object 𝑥 ≤ 𝑥 Defn ≤
∃𝑘 : 𝑥 = 𝑥 + 𝑘 ExistsIntro 0

𝑥 = 𝑥 + 0 Axiom

A1 : ∀𝑛 : 𝑛 + 0 = 𝑛 𝑥 = 𝑥 + 0 ForallElim A1 𝑥

H2 : 𝑥 + 0 = 𝑥 𝑥 = 𝑥 + 0 EqalsElim H2

𝑥 = 𝑥 EqalsIntro

Figure 3.30: The proof of Lemma 3.28, using Defn

Note that Defn is not a rule. It does not change the proof state. Instead, it allows us to transform

a goal by adding or removing syntactic sugar, or by folding or unfolding definitions. For further

readability, we should state the used definitions, as is done in Figure 3.30. We can also use it to

change a hypothesis. To do so, we simply re-state the hypothesis, keeping the same name.

Let’s look again at the formal argument made by that proof. We argue that every number is less

than or equal to itself. This sounds tautological, but it is not: We have a very precise definition

of ≤, and it is not immediately obvious why this definition has the desired property 𝑥 ≤ 𝑥 . The
definition works by saying that 𝑥 ≤ 𝑦 if we can add some 𝑘 to 𝑥 to reach 𝑦. The reason it is

reflexive is that we can always add 0 and because adding 0 has no effect.

The statement “Adding 0 has no effect” is an axiom of natural numbers. It is something we take

for granted or have otherwise justified as true, like by appeal to intuition. Alternatively, we can

see it as (part of) a definition of 0 and of addition—two mathematical concepts behaving such

that adding 0 has no effect.

For another example, here is a proof that adding two even numbers yields another even number.

Lemma 3.31. ∀𝑥,𝑦 : even(𝑥) → even(𝑦) → even(𝑥 + 𝑦)

Proof. See Figure 3.32. □

84

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Context Goal Rule

∀𝑥,𝑦 : even(𝑥) → even(𝑦)
→ even(𝑥 + 𝑦) ForallIntro 𝑥

x : object
∀𝑦 : even(𝑥) → even(𝑦)
→ even(𝑥 + 𝑦) ForallIntro 𝑦

y : object
even(𝑥) → even(𝑦)
→ even(𝑥 + 𝑦) ImplIntro

H1 : even(𝑥) even(𝑦) → even(𝑥 + 𝑦) ImplIntro

H2 : even(𝑦) even(𝑥 + 𝑦) Defn even, |
H1 : ∃𝑘 : 2𝑘 = 𝑥

H2 : ∃𝑘 : 2𝑘 = 𝑦
∃𝑘 : 2𝑘 = 𝑥 + 𝑦 ExistsElim H1 𝑘1

k1 : object
H3 : 2𝑘1 = 𝑥

∃𝑘 : 2𝑘 = 𝑥 + 𝑦 ExistsElim H2 𝑘2

k2 : object
H4 : 2𝑘2 = 𝑦

∃𝑘 : 2𝑘 = 𝑥 + 𝑦 ExistsIntro 𝑘1 + 𝑘2
2(𝑘1 + 𝑘2) = 𝑥 + 𝑦 Axiom

A5 : ∀𝑎, 𝑏, 𝑐 : 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 2(𝑘1 + 𝑘2) = 𝑥 + 𝑦 ForallElim A5 2

H6 : ∀𝑏, 𝑐 : 2(𝑏 + 𝑐) = 2𝑏 + 2𝑐 2(𝑘1 + 𝑘2) = 𝑥 + 𝑦 ForallElim H6 𝑘1

H7 : ∀𝑐 : 2(𝑘1 + 𝑐) = 2𝑘1 + 2𝑐 2(𝑘1 + 𝑘2) = 𝑥 + 𝑦 ForallElim H7 𝑘2

H8 : 2(𝑘1 + 𝑘2) = 2𝑘1 + 2𝑘2 2(𝑘1 + 𝑘2) = 𝑥 + 𝑦 EqalsElim H8

2𝑘1 + 2𝑘2 = 𝑥 + 𝑦 EqalsElim← H3

2𝑘1 + 2𝑘2 = 2𝑘1 + 𝑦 EqalsElim← H3

2𝑘1 + 2𝑘2 = 2𝑘1 + 2𝑘2 EqalsIntro

Figure 3.32: The proof of Lemma 3.31

b Checkpoint 3.33

What is the intuitive reasoning behind the proof in Figure 3.32?

3.3 Proof Tables in Practice

When looking at the proofs we have derived so far, we can see that we are often doing one of two

things:

Our proofs usually start by using ImplIntro or ForallIntro. Those directly move assumptions or

objects into our context. Often, we then additionally use AndElim or ExistsElim on those, to get

more elementary assumptions. In general, we call this use of taking assumptions and organizing

them into their constituent parts introducing.

Then, we have some lemma as part of our assumptions (or maybe by using Axiom), and we

apply this lemma. Often, before we can use ImplApply, we must provide specific objects using

ForallElim, and show some preconditions (using Assert and ImplSpecialize). Also, we might

not be able to show the goal, but instead only get another new assumption, which we can then

again break apart using AndElim or ExistsElim.

Introducing and applying lemmas is often mechanical. By this we mean that it does not really

85

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

involve any deeper thought, requiring only the application of rules.

What is not captured by these two activities is usually the more interesting part of the proof. For

example, in order to apply a lemma, we need to pick it first, and usually we need to choose at least

some of the variables needed for this lemma. Alternatively, performing a case distinction (using

ExcludedMiddle or OrElim) is also usually more involved. Similarly, when choosing a witness

for an existential quantifier (ExistsIntro), we also need to be clever, since it has to be correct.

When trying to write a proof, or when reading it, it is often useful to explicitly write down

the proof state to check that no lemmas are forgotten or used in an invalid way. Proof tables

could be a great way to do this. However, our current proof tables were developed to show how

mathematical proofs work in detail. Now that we know these details, they are much too large to

be useful.

In this chapter, we make our proof tables much more informal, while also making them easier to

work with. For this, we add several pseudo-rules. These “rules” rely on the reader to fill in the

details.

Our proof that addition preserves evenness can then be shortened, as Figure 3.34 shows.

Context Goal Rule

∀𝑥,𝑦 : even(𝑥) → even(𝑦)
→ even(𝑥 + 𝑦) Intro, Defn

x, y, k1, k2 : object
H1 : 2𝑘1 = 𝑥

H2 : 2𝑘2 = 𝑦

∃𝑘 : 2𝑘 = 𝑥 + 𝑦 ExistsIntro 𝑘1 + 𝑘2

2(𝑘1 + 𝑘2) = 𝑥 + 𝑦 Axiom

A3 : ∀𝑎, 𝑏, 𝑐 : 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 2(𝑘1 + 𝑘2) = 𝑥 + 𝑦 EqalsElim A3 with 2, 𝑘1, 𝑘2

2𝑘1 + 2𝑘2 = 𝑥 + 𝑦 EqalsElim← H1, H2

2𝑘1 + 2𝑘2 = 2𝑘1 + 2𝑘2 EqalsIntro

Figure 3.34: A shorter proof of Lemma 3.31

We have used an Intro pseudo-rule to handle introducing all the theorems. Similarly, after

introducing our axiom A3, we directly eliminate it, and then directly specify what objects we use

to eliminate our rules.

Another proof, where we liberally use a pseudo-rule we call Apply, can be found in Figure 3.35

We can see that there are two new subgoals generated when applying H1. Usually, we would have
to Assert the first subgoal, to later use ImplSpecialize to discharge it from our assumption we

wanted to apply. However, since doing this does not help us understand the proof better, we now

start to gloss over the details when using proof tables to get a rough idea.

b Checkpoint 3.36

Construct a formal deduction for the proof sketched in Figure 3.35. Only use the core rules

of our calculus, not any derived rules.

In general, the idea of a proof table is to make several things precise:

86

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Context Goal Rule

(∀𝑎, 𝑏, 𝑐 : 𝑃 (𝑎, 𝑏) → 𝑃 (𝑐, 𝑏)
→ 𝑃 (𝑎, 𝑐))

→ ∀𝑎, 𝑏 : 𝑃 (𝑎, 𝑏) → 𝑃 (𝑎, 𝑎)
Intro

H1 :

∀𝑎, 𝑏, 𝑐 : 𝑃 (𝑎, 𝑏) → 𝑃 (𝑐, 𝑏)
→ 𝑃 (𝑎, 𝑐)

a, b : object
H2 : 𝑃 (𝑎, 𝑏)

𝑃 (𝑎, 𝑎) Apply H1 with 𝑎, 𝑏, 𝑎

Context Goal Rule

𝑃 (𝑎, 𝑏) Assumption H2

Context Goal Rule

𝑃 (𝑎, 𝑏) Assumption H2

Figure 3.35: A proof using the Apply pseudo rule

• What are our current assumptions?

• Which lemma/assumption/axiom are we applying, and what remains thereafter?

• Which objects do we use to instantiate the assumption being applied?

• Which objects do we use for existence proofs?

• Where do case distinctions happen? On what?

• Which side of a disjunction do we choose?

When doing so, we should always make sure that we know how to unpack an informal rule like

Apply. Luckily, that level of detail is often unnecessary in practice.

� In Other Words

Proof tables are often unnecessarily long. We can make them simpler by coming up with

more powerful rules, that can do many things at once, and ease certain common operations.

Unfortunately, these rules are kind of made up and require certain care. It can be possible

to misuse them, and so, to construct an invalid proof which nonetheless looks correct.

Thus, when using them, we should at least shortly think about how to unpack them into

smaller steps closer to the actual basic rules.

This also means that these rules can not be used when we ask for a formal deduction in an

exam.

3.4 Textual Proofs

Proof tables can be nice for visualizing proofs, and for finding them. Unfortunately, actual proofs

are almost always written in plain language, using a particular style. Note that this chapter

presents a particular style, while in reality, proofs might be considerably more diverse.

At its core, any textual proof can be read as a manual for constructing a proof table. That is, all

the concepts we know from proof tables still apply. In a textual proof, we still progress from goal

87

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

to goal. We still need to keep track of our assumptions, and the objects we can use to construct

new objects. We are still bound by the rules of our logic, and can only do certain operations.

However, since we are no longer bound by the strict formalism of a proof table, we can express

this in a much more natural way. Before we can start writing such proofs on our own, we should

look at a few examples.

First, let’s again look at the fact that addition preserves even-ness.

Lemma. ∀𝑥,𝑦 : even(𝑥) → even(𝑦) → even(𝑥 + 𝑦)

Proof. We are given 𝑥,𝑦 and further that there are𝑘1, 𝑘2 such that 2𝑘1 = 𝑥 and 2𝑘2 = 𝑦. It remains to

be shown that ∃𝑘 : 2𝑘 = 𝑥+𝑦. We choose 𝑘 B 𝑘1+𝑘2, and conclude, as 2(𝑘1+𝑘2) = 2𝑘1+2𝑘2 = 𝑥+𝑦
by elementary arithmetic. □

This proof is almost a verbal reading of the informal proof table from a few pages ago. Indeed,

if you design your proof tables well, you can usually create a formal proof by just reading out.

Conversely, a nicely written textual proof immediately suggests how to construct a proof table.

We can already state the most important difference: In a textual proof, it is uncustomary to give

names to assumptions. Instead, we simply state the assumptions and then state them again when

later using them. This can be more cumbersome and harder to track than a proof table, and

a skilled proof writer will know how to construct a textual proof so that this can be avoided.

Unfortunately, since this is not common, there is no universal way to name assumptions. Simply

adding a name, separated by a colon, like in “and assume H1 : 𝑥 = 𝑦,” usually gets the point across.

Here is another example, which just uses propositional logic.

Proof that 𝑃 ∨𝑄 → 𝑄 ∨ 𝑃 . We are given 𝑃 ∨𝑄 . Case distinction on this:

• 𝑃 holds. We are done by choosing the right side.

• 𝑄 holds. We are done by choosing the left side. □

As a general rule, we can always create a bullet point list. If we get further sub-tasks, we can

always create more nested bullet points. While it depends on your style, you might want to avoid

more than three levels of indentation. Instead, use other methods of structuring the proof, which

we outline soon. For now, we focus on how we conventionally phrase the several proof rules we

have seen so far.

Before we get into the details of writing a proof, we should note where writing such a proof is

appropriate. In mathematical writing, proofs should always start with “Proof ,” in italic. Afterwards,
one can state the main idea of the proof, like “by induction” or “by contradiction.” Of course, if

the proof is not by some “special” method, it is fine to simply write Proof.

At the end of a proof, a square □, called tombstone, is common. It is put at the right side of

the page, right after the last part of the proof. In the past, people used to put certain important-

sounding phrases like “quot erat demonstrandum.”
5
instead. You can also end your proof with

“qed.”, but the tombstone is preferred nowadays.

5
Latin for “which was to be proven.”

88

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Further note that when we start a proof, it should always be completely clear which goal we are

actually trying to prove right now. Usually, this is accomplished by proving lemmas immediately

after they are stated. If not, the goal to be proven should be repeated. It should not be described

informally, like by saying “Addition preserves even-ness,” instead it should be spelled out formally.

Once this is done, the proof can begin properly.

For this, there is one rule that always holds: Know the reader. The main reason to write a proof

is so that people, including the author
6
, can read it. Thus, one should not clutter the proof, to

make it unnecessarily long. The reader certainly knows the basics of first-order logic, and need

not be told that a conjunction is true iff both sides are true. Conversely, they might have a bad

short-term memory and must be reminded of certain definitions, lemmas, and assumptions. After

writing a proof, one should read it again, and rephrase the parts where one got lost.

3.4.1 How to Translate a Proof Table

We now give rules for writing a proof that are based on a proof table. The idea is that a proof

table already closely captures what happens during a proof, and since we already know how to

construct these, writing a proof with an already existing proof table in mind becomes a lot easier.

Eventually, you will be able to construct the proof table in your head while writing the proof.

Even then, drawing the proof table (even if just the shortened version) on paper is beneficial.

Concluding the Proof The rules EqalsIntro, FalsityElim, and TruthIntro all terminate

the goal. In a proof, we usually indicate that a proof is over using the word “done,” or by saying

“conclude.” For example, if the last non-trivial operation is to apply a lemma, we might then

conclude our proof like this:

• We apply the lemma and are done.

• Conclude by applying the lemma.

• Finally, apply the lemma.

The Assumption rule can similarly be used to conclude a proof. Here, we have to be a bit

more careful. If the assumption has recently been introduced and is still present in the short-

term memory of the person reading our proof, we can simply be done like with the rules above.

Otherwise, we should hint that our current goal is already assumed, by just mentioning that we

conclude by assumption. This might be phrased like this:

• Apply the lemma and conclude by assumption.

• We are done since the goal was previously assumed.

• Conclude using H3.

• We are done since this was already shown using Lemma 42.

• Finish since this was assumed initially.

6
Writing down a proof can be useful way to gain more confidence that this proof is correct, since it forces you to

write out why each step is justified.

89

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

When we named an assumption, we should consistently use that name to refer to it. As mentioned,

this is uncommon. Instead, we can also try to describe where we got this assumption. If we had

it since the beginning, we can state this. If we applied some special lemma and kept the stated

assumptions around until now, we can also reference this lemma. Creative proof writers might

also refer to the reader using phrases like “Which was assumed two pages ago.” If nothing is

applicable, the assumption can also be stated in full, although this stops the reader, since they are

now searching for where this assumption was introduced.

Again, you can simply be done if the assumption is fresh. When in doubt whether an assumption

is fresh, it is helpful to remain on the side of caution and state it explicitly.

Introducing New Assumptions In our informal proofs, we have already seen the shorthand

Intro, which combined the rules ForallIntro, ImplIntro, AndElim, and ExistsElim. In a

textual proof, we use the same approach: We break apart all our assumptions as soon as we

introduce them. Then, it is usually sufficient to merely state the new, decomposed assumptions

and variables.

You can expect that your readers know how to break apart an assumption 𝑃 ∧ 𝑄 , or that one
assumes the precondition of an implication to prove the consequences. Use phrases like

• We are given 𝑎, 𝑏, 𝑐 such that 𝑎 = 𝑏 and 𝑏 = 𝑐 .

• Assume 𝑎, 𝑏, 𝑐 with 𝑎 = 𝑏 and 𝑏 = 𝑐 .

• We have 𝑎, 𝑏, 𝑐 for which 𝑎 = 𝑏 and 𝑏 = 𝑐 .

• Let 𝑎, 𝑏, 𝑐 be arbitrary, but fixed.

• Let 𝑎, 𝑏 be arbitrary and 𝑐 such that 𝑎 < 𝑏 < 𝑐 .

The phrase “arbitrary, but fixed” is usually used when introducing a variable that is not further

constrained by a property.

Phrases like the following should be avoided since they only clutter the proof:

• We have 𝑎, 𝑏, 𝑐 and 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 . Since both are true, we can deduce 𝑎 = 𝑏 and 𝑏 = 𝑐

separately.

• We can assume that 𝑎 = 𝑏 is true since if it is false, we are done since an implication is true
when the precondition is false.

The first phrase can sometimes be used, but only if we need to break apart a “spurious” conjunction

that we did not have the chance to break apart otherwise. Even then, avoid phrases like “since

both sides are true”—both you and your audience already know how conjunction works, and do

not need to be told this.

Applying Lemmas andHypotheses In our proof, wewill almost certainly use our assumptions

or other lemmas or axioms we have already proven. The first and most important rule is that

we should clearly state which lemma, axiom, or assumption we are using. We have already seen

how we reference assumptions. For lemmas, we usually give them either names or consistently

90

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

number them, in which case we can simply refer to “lemma 42.” Similarly, axioms might have

names, like “Distributivity of +,” which make them easy to reference in a textual proof. Of course,

some variation is allowed here—“since + is distributive” is completely fine. If it is not clear which

axiom is meant, you should make this explicit. When in doubt, formally state the complete axiom.

When we apply a lemma (axiom, hypothesis), this usually has a similar structure: First, we

specialize any quantifiers, then we need to handle several preconditions. Eventually, we get to

the “meat” of the lemma—some new, useful assumptions which help us continue our proof. These

new assumptions are then handled using the already discussed techniques for introducing new

assumptions. As discussed above, we simply state the assumptions we get after introduction.

One might think that the reader knows the lemma, and thus the assumptions we get need not be

re-stated. In practice, it is extremely helpful for the reader to note the assumptions the lemma

introduced. This can alleviate confusion, especially since it hints to the reader what the lemma

was about, just in case they already forgot.

Applying a lemma can be phrased like this:

• We apply lemma 42 to get 𝑘 and 𝑟 such that 𝑎 = 𝑘2 + 𝑟 .

• Using lemma 42 with 𝑐 , we get that 𝑎 < 𝑐 ∨ 𝑎 > 𝑐 .

• We apply lemma 42. For this, we first show that 𝑎 = 𝑏 and 𝑏 = 𝑐 actually hold, and can then
derive . . . [followed by two cases, one for 𝑎 = 𝑏 and one for 𝑏 = 𝑐]

• We continue with lemma 42, which is applicable since 𝑘2 > 0, and find . . .

• We use lemma 42. Now, 𝑥 = 𝑦 and 𝑦 = 𝑧 additionally need to be shown.

The last example highlights how to mention that there are new goals. This is usually expressed

by saying that something “needs to be shown.” If the original goal disappears because it could be

concluded, the phrase “remains to be shown” should be used instead, which indicates that we

have concluded this goal by introducing others. We again note that new goals should always be

stated formally so that the reader can orient themselves if they were unsure about the specific

proof obligations imposed by some lemma.

When applying a lemma, we often do not do it in the fully general fashion, where we simply

introduce all the new assumptions into our context. Instead, it often is the case that there is only

one such assumption. Then, we can immediately use it, instead of first introducing it. We will see

several examples of this in the next few examples.

Working with Equality The main way to prove equality is by noting that both sides of the

equality sign are syntactically the same. We have already seen that this is so obvious that we can

simply state “We are done” and successfully conclude the proof.

We still need to discuss how to use an equality, i.e. how to describe uses of the EqalsElim rule.

Since this is called rewriting, we express this by saying that we rewrite using an equality. If we

want to be brief, we can also just mention that the next step uses the equality since it should be

obvious that it is used for rewriting. This is commonly expressed like this:

• Using 𝑥 = 𝑦, showing 𝑦 = 𝑧 suffices.

91

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

• We rewrite with 𝑎 = 𝑏 to get 𝑏 > 𝐵.

• Conclude with 𝑥 = 2𝑘1.

Again, since the goal changes, it should be re-stated.

So far, rewriting was limited to the goal, even though rewriting in an assumption is totally fine.

In a proof table, this would work by first asserting the changed assumption, and then proving the

new subgoal generated by Assert using ordinary rewriting. In a textual proof, this is easier. We

simply state that we rewrite in some assumption, like this:

• Since 𝑎 = 𝑏 we additionally have 𝑏 > 𝑐 .

• We rewrite with 𝑞 = 𝑟 2 in the assumption 𝑎 =
√
𝑞 to get 𝑎 =

√
𝑟 2.

When repeatedly rewriting with several equalities, it is often useful to give an equality chain.

This can be done inline, like this:

• We conclude, since 𝑎 = 𝑏 = 𝑐 > 𝑑 = 𝑒 (Provided the reader knows that 𝑎 = 𝑏, 𝑏 = 𝑐 , 𝑐 > 𝑑 ,

and 𝑑 = 𝑒 are assumptions).

• We show this by rewriting repeatedly:

𝑎 = 𝑏 As 𝑎 = 𝑏

= 𝑐 As 𝑏 = 𝑐

> 𝑑 As 𝑐 > 𝑑

= 𝑒 As 𝑑 = 𝑒

This style of reasoning is likely familiar. You now know that this is just repeated elimination of

the several equalities.

Finally, we can also combine rewriting with lemma application. This is much more simple

than it sounds. For example, imagine that there is some lemma (named lemma 42) stating

∀𝑎, 𝑏 : 𝑎 ≥ 𝑏 → 𝑎 ≤ 𝑏 → 𝑎 = 𝑏. Then, one can combine rewriting and application like this:

• We rewrite using lemma 42 to get 𝑘 = 𝑏, while 𝑎 ≥ 𝑏 and 𝑎 ≤ 𝑏 also need to be shown. [if

the goal before was 𝑘 = 𝑎]

• .. so 𝑘 + 𝑥 = 𝑘 + 𝑦 still needs to be shown. After rewriting lemma 42 with 𝑥,𝑦, just 𝑥 ≥ 𝑦
and 𝑥 ≤ 𝑦 remain to be shown.

• We use lemma 42 in our assumption that 𝑥2 + 𝑦2 = 𝑧2. We next show 𝑥 ≤ 𝑦 and 𝑥 ≥ 𝑦 and

then thus get 𝑦2 + 𝑦2 = 𝑧2.

We remark that in a textual proof, it is often natural to combine several closely coupled steps into

just one operation, like we did with the last example from above. There, we applied a lemma and

did rewrote in an assumption all at the same time.

92

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Organizing Cases So far, we have seen several examples which introduce new proof goals. In

our proof tables, we would create new sub-tables.
7
In a textual proof, we can use a list and simply

prove the several goals one after the other. By appropriate indentation, we can communicate

which subgoals start where, if there are nested subgoals.

If the new goals are very simple, we can also solve them inline, without explicitly creating a new

list. For example, one might write this:

• We apply lemma 42 and note that 𝑥 ≥ 𝑦 and 𝑥 ≤ 𝑦 are assumed.

• 𝑎 = 𝑏, 𝑏 = 𝑐 , and 𝑐 = 𝑑 need to be shown. The first two are straightforward, so 𝑐 = 𝑑 remains.

Occasionally, a proof might have so many sub-goals that spacing becomes an issue. Having more

than three nested sub-goals should be avoided, and a proof with that many subgoals can likely be

refactored. Usually, one can find a helpful lemma which can be proven separately and eliminates

the need to have that many nested sub-goals. In fact, it is always possible to extract the current

proof state into a separate lemma, but a skilled proofwriter will identify what parts should be

refactored into which lemmas so that the proof, and the new lemmas, are “pretty.”

Alternatively, it sometimes is possible to group different goals by using one paragraph for each

goal, or by putting separating lines between different parts of the proof. There are no hard rules

here, as long as it is obvious where one goal ends and the next one starts.

Additionally, instead of using plain bullets • to separate different proof goals, we can use more

helpful symbols. A common case is when proving a material equivalence, like 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 .

There, one usually does the following:

Proof that 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 . We show both directions separately:

→: We assume 𝑥 = 𝑦 . . .

←: We assume 𝑦 = 𝑥 . . . □

This is particularly useful if there are several similar-looking proof goals that only differ in a few

symbols. Furthermore, if there are so many proof goals that the average reader will already have

forgotten goal number 4 after proving the first three goals, one should again remind the reader

what the specific goal is. If a special bullet (like above) does not suffice, it is helpful to recall the

entire sub-goal.

Case Distinctions In our proof tables, there are two different rules that are usually called case
distinctions: ExcludedMiddle and OrElim.

The difference is that ExcludedMiddle does a case distinction based on whether a statement is

true or false. For OrElim, the case distinction is between two sides of a disjunction. In either way,

we typically start a case distinction like this, and then follow it by proving the different cases:

• Case distinction on whether 𝑎 = 𝑏 is true:
7
In fact, proof tables merely optimize the case where the proof obligation remains. In general, proofs do not go

linearly but have a tree shape. Usually, one then also uses inference rules for presenting formal proofs. We don’t here,

since they are bad for learning proofs.

93

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

• Case distinction on 𝑃 ∨𝑄 :

• We are given 𝑥 , and that 𝑥 = 3 or 𝑥 = 4. Case distinction:

• We apply lemma 42 and continue, depending on whether 𝑃 or 𝑄 holds: [where lemma 42

shows that 𝑃 ∨𝑄]

Again, a case distinction can be combined with the application of a lemma.

There are several more special cases of case distinctions. A common one is checking whether

some objects are the same or not:

• We do a case distinction on 𝑥 . If 𝑥 = 0, the claim is obvious, otherwise . . .

• Case distinction on 𝑥 :

– 𝑥 = 0 ...

– 𝑥 = 1 ...

– otherwise, ...

• We analyze the relation between 𝑥 and 𝑦:

<: We know 𝑥 < 𝑦 . . .

=: We know 𝑥 = 𝑦 . . .

>: We know 𝑥 > 𝑦 . . .

In fact, the last case was an implicit application of one of the properties of <. In that case, we

trust that the reader of the proof can figure out which axiom was used, or is otherwise able to see

that this case distinction is correct and does not miss any cases.

Falsity and Contradictions Remember the FalsityElim rule: It allowed us to conclude any

proof if one of the assumptions is ⊥. We also derived a ExFalso rule, which similarly allowed us

to always change the current proof goal to falsity, i.e. to show that the assumptions in the context

are contradictory in a more general way.

In a textual proof, this also works. We do not call it eliminating falsity, but deriving a contradiction.
As a first approximation, a formal proof replaces the word falsity by the word a contradiction. We

might say:

• We show that our assumptions are contradictory.

• Assume . . . and derive a contradiction.

• Since 𝑎 = 𝑏 and 𝑎 < 𝑏 are contradictory, we are done.

• We assume 𝑃 ∨ ⊥. Case distinction. The second case is done, since it is contradictory. For
the first case, . . .

Unfortunately, the word “contradiction” is also used to describe the proof technique of “proof by

contradiction.” In a proof by contradiction (remember the Contradiction rule), we prove a goal

𝑃 by assuming ¬𝑃 and showing ⊥, i.e. deriving a contradiction. Intuitively, this establishes that

¬𝑃 can not be true, so 𝑃 must be.

94

Introduction to Mathematics in Computer Science Chapter 3: Proofs and Deductions

Trivial Statements When reading proofs, one often comes across statements like “this is

obvious” or “holds trivially.” Sadly, not all statements claimed to be obvious actually are. Thus,

this should be avoided, unless one knows that the audience will similarly be able to see that the

goal is obvious.

For example, statements involving “trivial” operations on numbers, using just addition, multiplica-

tion, and constants, are usually better described as holding by elementary arithmetic. Similarly, it is

usually obvious that a goal of shape ¬(𝜑∧𝜙) can be transformed to ¬𝜑∨¬𝜙 . Such transformations

can then be said to hold by elementary propositional logic. Here, the word trivially is also fine,

since the audience must already know propositional logic to even have a chance at understanding

the proof. Even then, it helps to be more specific. If it is not immediately obvious how a trivial

statement can be deduced from the algebraic laws of propositional logic, it should not be claimed

to hold trivially.

Some Examples We now translate some of the examples from the previous chapter. We start

with the proof of Lemma 3.31, which stated that addition preserves evenness:

Proof that ∀𝑥,𝑦 : even(𝑥) → even(𝑦) → even(𝑥 + 𝑦). We assume 𝑥,𝑦 and that there are 𝑘1 and 𝑘2
such that 2𝑘1 = 𝑥 and 2𝑘2 = 𝑦 by the definition of even. It remains to show that there is a 𝑘 for

which 2𝑘 = 𝑥 + 𝑦. We choose 𝑘 := 𝑘1 + 𝑘2, and can then conclude 2(𝑘1 + 𝑘2) = 𝑥 + 𝑦 = 2𝑘1 = 2𝑘2
by elementary arithmetic. □

Here is the proof that ≤ is reflexive:

Proof that ∀𝑥 : 𝑥 ≤ 𝑥 . Let 𝑥 be arbitrary, but fixed. We must find 𝑘 such that 𝑥 = 𝑥 + 𝑘 . Choose
𝑘 := 0 and are done, as 𝑥 + 0 = 𝑥 . □

Here is another example, which does not use any arithmetic, but just plain first-order logic:

Lemma 3.37. (∀𝑥,𝑦 : 𝑃 (𝑥,𝑦) → 𝑄 (𝑦, 𝑥)) → (∀𝑥 : 𝑃 (𝑥, 42)) → ∃𝑧 : ∀𝑘 : 𝑄 (𝑧, 𝑘)

Proof. We assume ∀𝑥,𝑦 : 𝑃 (𝑥,𝑦) → 𝑄 (𝑦, 𝑥) and ∀𝑥 : 𝑃 (𝑥, 42). Choose 𝑧 := 42, and let 𝑘 be

arbitrary, but fixed, so that 𝑄 (42, 𝑘) remains to be shown. Using the first assumption, 𝑃 (𝑘, 42)
suffices, which can be shown using the second assumption. □

Final Remarks As always, the usual writing advice applies:

• Be as short as possible, and as precise as is necessary.

• Know your reader.

• If you do not understand what you have written, you should rewrite it.

Apart from this, one is free to deviate from the rules laid out here, as long as it is clear how the

corresponding proof table would look. The suggestions made in this chapter are just suggestions

and no hard rules.

95

This page is intentionally left blank.

4
�� Sets and Relations

4.1 Sets

In the previous chapters, we talked a lot about objects from different universes. These objects

often had properties in common that we were able to express through logical formulas. However,

sometimes, we would like to have arbitrary collections of such objects.

For example, we have previously seen that numbers can be categorized into different collections:

we have the collection of whole numbers, also called integers. If we restrict this collection to

number greater than or equal to zero, we obtain another one, namely the natural numbers. Most

likely, you have even seen the symbols N,Z,Q, and R for such collections of numbers.

We would now like to formalize how such collections and, furthermore, collections of any (possibly

infinite) number of arbitrary objects behave and what they look like.

� Chapter Goals

In this chapter, you will learn

• the foundation of mathematical set theory

• how to state and prove facts about sets and their elements

• the difference between sets and tuples

• about the concept of cardinality; first for finite sets only

Luckily, mathematicians have come up with solutions for this problem very early on: different

iterations of set theory. Especially Georg Cantor, as one of the first to attempt on defining these

collections as sets, gave a naive description of what a set actually is.

� Important Individual: Georg Cantor

Georg Cantor (1845-1918) was a German mathematician and one of the

founding fathers of modern set theory. His most known works are on

the topic of infinite sets showing that infinitely many differently sized

infinities exist, and the proof that the set of real numbers R is larger

than the set of natural numbers N. Before focussing on set theory,

Cantor also researched in the fields of number theory and analysis

with a special focus on representing functions using trigonometric

series.

Definition 4.1 (Set [Naive]). By an “aggregate”1(set) we are to understand any collection into a
whole𝑀 of definite and separate objects𝑚 of our intuition or our thought. These objects are called
the “elements” of𝑀 .

1
“Aggregate” is a translation of the German word “Menge.” We will use “set” instead.

97

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

This sentence is rather vague, which you don’t expect from a mathematically sound definition. In

the following paragraphs, we will try to get an intuition for the basic rules sets must follow and

some important properties they have.

You can imagine a set like a box. This box typically has a name consisting of a capital letter (which

we already saw in Cantor’s definition). You can put anything you like into the box. For describing

its contents, we typically use curly braces and then simply list all the objects in the box: Let’s say

you have a box 𝐵 and put in a shirt, a pen, and a coin. In short, this would be

𝐵 B {shirt, pen, coin} .

Nothing unusual so far, but here comes the first caveat with this metaphor. When you put in

another pen identical to the first one, strange things start to happen. Remember how the definition

of a set mentioned that objects need to be separate? This means that any object can not appear

twice in a set, it can only be contained or not contained. This has the consequence that the second
pen disappears as soon as you put it into the box, as it is equal to the pen that is already in the set.

So, after putting the second pen into our set, it would still look like this:

𝐵 = {shirt, pen, coin, pen} = {shirt, pen, coin} .

We also say that the elements of a set are distinct.

Another property that is not stated explicitly in the above definition is that the order of the objects

in a set, that is, the order you put your objects into the box, does not matter at all. We consider a

set containing an apple and a pear equal to a set containing a pear and an apple:

{apple, pear} = {pear, apple} .

To summarize, a set is an abstract structure that can hold an arbitrary number of (even infinitely

many) distinct objects. But, except for the one-letter name, this still does not sound like a real

mathematical concept. Therefore, the first thing we want to formalize when talking about sets is

the notion of membership, that is, what it means for a set to contain an object or not. This has

already been briefly mentioned in Cantor’s definition, now we want to turn the vague sentence

into a mathematical definition.

Definition 4.2 (Set Membership). If a set 𝐴 contains an object 𝑥 , we say that 𝑥 is an element of
𝐴 an we denote this by

𝑥 ∈ 𝐴.

If the converse is true, that is, 𝑥 is not an element of 𝐴, we write

𝑥 ∉ 𝐴.

Particularly, for every object 𝑥 either 𝑥 ∈ 𝐴 or 𝑥 ∉ 𝐴.

< Example 4.3: Members of N

If we look at the set of natural numbers N, we can say that 42 ∈ N but −42 ∉ N.
Sets can also contain other sets, meaning, if 𝐴 is a set containing the set 𝐵, then 𝐵 ∈ 𝐴.

98

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Of course, you can have a box where you put nothing into. This box is unique and therefore gets

its own definition.

Definition 4.4 (Empty Set). The set that contains no elements is called the empty set and is
denoted with

∅ or {}.

Formally, this means
∀𝑥 : 𝑥 ∉ ∅.

4.1.1 Notation

There are different ways to write down sets, each with their own advantages and disadvantages.

Here are some of the most important ones:

Enumeration This is the most common way to write a set and we have already encountered it

in the previous paragraph. You write out all the elements separated by a comma and surrounded

by curly braces. For example,

𝐹 B {♥, ♦, ♣, ♠}

denotes the set of the four different card faces. Obviously, this does not work for infinite sets as

you cannot write down infinitely many objects.

Dot Notation If you do not want to write all elements by hand but there is a visible pattern,

you can abbreviate a sequence of elements with dots. This also enables you to write sets with

infinitely many elements. However, this is not considered a formal notation and therefore seen

rather rarely.

For example,

{0, 2, 4, 6, . . . , 42}

denotes the set containing all even numbers until 42 and

{0, 2, 4, 6, . . .}

denotes the set that holds all even numbers.

Predicates We can also use predicates if we do not want to specifically state concrete elements

in the set. Generally,

{𝑥 | 𝜑 (𝑥)}

describes the set containing all objects 𝑥 which 𝜑 (𝑥) holds for. In practice, we often further

simplify such representation by explicitly giving a set from which to draw the possible elements.

In other words, if 𝐴 is a set, then

{𝑥 ∈ 𝐴 | 𝜑 (𝑥)}

describes the set that contains all elements of 𝐴 that fulfill the predicate 𝜑 .

99

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Backus–Naur Form In the first chapter about formal languages we got to know BNFs which

specify a language. We can regard these languages as sets, namely as the set containing all words

that can be derived with the respective language. For example, the BNF

L ∋ 𝜑 F 𝐴 | 𝐵 | 𝐶

corresponds to the set

𝐿 = {𝐴, 𝐵,𝐶} .

< Example 4.5: Even Numbers

{𝑛 | 𝑛 ∈ N ∧ 𝑛 is an even number} and {𝑛 ∈ N | 𝑛 is divisible by 2} again both denote the

set of all even numbers.

b Checkpoint 4.6: Set Notations

Make sure that you understand all set notations. Here are some exercises:

• Write the set that contains all powers of two in every possible notation.

• Give the empty set ∅ in predicate notation.

• Can you express every set in every notation?

Visualization with Venn diagrams

There is another important way how to describe sets, and that is graphically. Especially when

dealing with set manipulations, like in the next chapter, meaningful visualizations will help us

better understand what different operators do with multiple sets.

� Important Individual: John Venn

John Venn (1834-1923) was an English mathematician, philosopher,

and priest. During his time in Cambridge, he studied and taught logic

(especially mathematical andmodal logic) and probability theory. In the

search for graphical visualizations of sets, he refined the set diagrams

previously established by Euler into Venn diagrams, as we call them

today.

The whole area of the diagram represents the universe of all possible elements. Then, we draw a

circle or an ellipse for each set to be displayed such that they overlap.

𝐴 𝐵

100

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

In contrast to the other options we have seen, Venn diagrams are not a notation, as they do not

represent concrete sets with concrete elements and instead represent them rather abstractly. But

this is not the point of the visualization; its function is to represent the relation of two or more

sets, whatever the elements may be.

4.1.2 Set Operators

Basic Definitions

Now that we have a solid foundation to work with, let’s take a look at what we can actually do

with sets and in which ways we can transform them. All operators will be illustrated using Venn

diagrams where the color gray marks the result of the respective operation.

Definition 4.7 (Intersection). Let 𝐴 and 𝐵 be sets. Then 𝐴 ∩ 𝐵 denotes the set that contains all
elements that are both in 𝐴 and in 𝐵. We call this the intersection of 𝐴 and 𝐵.

𝐴 ∩ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}

𝐴 𝐵

𝐴 ∩ 𝐵

If the intersection of𝐴 and 𝐵 is empty, that is𝐴∩𝐵 = ∅, we say that they are disjoint. Sometimes,
you will see this represented by non-overlapping circles in a Venn diagram:

𝐴 𝐵

101

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Definition 4.8 (Union). Let 𝐴 and 𝐵 be sets. Then 𝐴 ∪ 𝐵 is the set of all elements that are in 𝐴, 𝐵,
or both. This is called the union of 𝐴 and 𝐵.

𝐴 ∪ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}

𝐴 𝐵

𝐴 ∪ 𝐵

Definition 4.9 (Difference). Let 𝐴 and 𝐵 be sets. Then 𝐴 \ 𝐵 contains all elements of 𝐴 that are
not in 𝐵. This is called the difference of 𝐴 and 𝐵.

𝐴 \ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}

𝐴 𝐵

𝐴 \ 𝐵

Definition 4.10 (Complement). Let𝐴 be a sets Then𝐴 represents the set that contains all elements
that are not in 𝐴, which we also call the complement of 𝐴.

𝐴 = {𝑥 | 𝑥 ∉ 𝐴}

Another common notation for the complement that you often find in literature is 𝐴𝑐 .

𝐴 𝐵

𝐴

102

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

That was a lot of definitions all at once, so let’s have a look at some concrete examples before we

continue.

< Example 4.11: Set Operations

First, we consider finite sets. Let 𝐴 B {1, 2, 3, 4, 42} and 𝐵 B {3, 4, 5, 42} in our universe N.

• 𝐴 ∩ 𝐵 = {3, 4, 42}, 𝐴 and 𝐵 are not disjoint.

• 𝐴 ∪ 𝐵 = {1, 2, 3, 4, 5, 42}
• 𝐴 \ 𝐵 = {1, 2}
• 𝐴 = {5, 6, 7, . . . , 41, 43, 44, . . .}
Everything we have seen so far naturally also applies to infinite sets. Consider 𝐴 B

{𝑛 ∈ N | (2 | 𝑛)} as the set of even numbers and 𝐵 B {𝑛 ∈ N | ¬(2 | 𝑛)} as the set of odd
numbers in the universe N.

• 𝐴 ∩ 𝐵 = ∅, so 𝐴 and 𝐵 are disjoint.

• 𝐴 ∪ 𝐵 = N

• 𝐴 \ 𝐵 = 𝐴 (as the sets have no shared elements)

• 𝐴 = 𝐵 and 𝐵 = 𝐴

Looking at the Venn-diagrams above, we can observe an interesting connection between the last

two operators:

Theorem 4.12 (Difference as Complement). Let 𝐴 and 𝐵 be sets. Then

𝐴 \ 𝐵 = 𝐴 ∩ 𝐵.

Of course, just because it looks like this in the diagram does not mean that is actually true.

Therefore, we should prove it—but if we try now, we will find that we do not have the tools yet.

So, keep the statement in mind while we lay the foundations for a proof:

Definition 4.13 ([Proper] Subset, Superset). Let 𝐴 and 𝐵 be sets. Then we call 𝐴 a subset 𝐵 and
𝐵 a superset of 𝐴 if and only if all elements of 𝐴 are also elements of 𝐵, that is

𝐴 ⊆ 𝐵 :B (∀𝑥 : 𝑥 ∈ 𝐴→ 𝑥 ∈ 𝐵) .

𝐵

𝐴

103

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

If 𝐴 is not a subset of 𝐵, we write

𝐴 ⊈ 𝐵.

𝐵𝐴

Furthermore, we call 𝐴 a proper subset (or strict subset) of 𝐵 (and likewise 𝐵 a proper superset
of 𝐴) if and only if 𝐴 is a subset of 𝐵 and there are elements of 𝐵 that are not elements of 𝐴. In
short, we say

𝐴 ⊊ 𝐵 :⇐⇒ (𝐴 ⊆ 𝐵 ∧ ∃𝑥 : 𝑥 ∈ 𝐵 ∧ 𝑥 ∉ 𝐴) ⇐⇒ (𝐴 ⊆ 𝐵 ∧𝐴 ≠ 𝐵) .

The first Venn diagram depicts a proper subset relation. The second one shows two sets that are not
subsets of each other.

< Example 4.14: Sets of Card Suits

• The set of the black card suits, {♣, ♠} is a subset of the set of all card suits, {♥, ♦, ♣, ♠}.
Therefore, the latter is also a superset of the former.

• In fact, the set of black card suits is a proper subset of the set of all card suits because

there exist further suits, ♥ and ♦, that are not black card suits.

• {♥, ♦, ♣, ♠} is a subset, but not a proper subset of {♥, ♦, ♣, ♠} because there is no element

that only occurs in one of the sets.

• The set of all card suits is not a subset of the set containing only the red ones because,

for example, ♠ ∉ {♥, ♦}.

b Checkpoint 4.15: Sub- and Supersets

At this point, it makes sense to pause for a moment and think about these definitions. Are

there any special cases? Are there any statements that always hold? In particular, given

any set 𝐴, are there other sets that are always (proper) subsets of 𝐴?

Equality

When we encounter sets in the wild, we might like to know whether two sets are the same. But

what does that even mean? Sets can be very abstract, so how might we compare them? The

following definition should give a reasonable notion of what we understand under the term

equality in natural language.

104

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Definition 4.16 (Set Equality). Two sets 𝐴 and 𝐵 are equal if and only if they both contain the
same elements, formally ∀𝑥 : 𝑥 ∈ 𝐴↔ 𝑥 ∈ 𝐵. Then we write

𝐴 = 𝐵.

If this condition does not hold, we call them unequal and write

𝐴 ≠ 𝐵.

However, if we want to actually prove that two sets are equal or not, we usually use a more formal

approach which is described by the following theorem.

Theorem 4.17 (Set Equality with Subsets). Two sets are equal if and only if they are subsets of
each other. In other words, if 𝐴 and 𝐵 are sets, then

𝐴 = 𝐵 ↔ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴.

Proof. We prove the two directions of the equivalence.

←: Let 𝐴 ⊆ 𝐵, 𝐵 ⊆ 𝐴 and furthermore, 𝑥 ∈ 𝐴. Then by definition, we have 𝑥 ∈ 𝐵 because

𝐴 ⊆ 𝐵. Likewise, if 𝑦 ∈ 𝐵, then because of 𝐵 ⊆ 𝐴, it follows that 𝑦 ∈ 𝐴. With this, we have

shown that every element of 𝐴 is also in 𝐵 and every element of 𝐵 is also in 𝐴. Therefore,

𝐴 and 𝐵 must have the same elements.

→: Let 𝐴 = 𝐵. Then they both contain the same elements. It follows that if 𝑥 ∈ 𝐴, it is also
𝑥 ∈ 𝐵 and vice versa. With this, we get 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, as both 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 and

𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 hold. □

� In Other Words: (Dis-) Proving Equality Using Mutual Inclusion

As said before, the statement of the previous theorem helps us to prove that two specific

sets are equal. Namely, we can show in two steps that they are subsets of each other. This

is analogous to proving an equivalence (like above): first, show 𝐴 ⊆ 𝐵, then 𝐵 ⊆ 𝐴.
It is much easier to show that two sets are unequal: you just have to give a counterexample

of an element being in one but not in the other set.

Ç Going Beyond: Subset vs. Implication

From this fact, you can get the intuition that ⊆ works like→, but on a set level. This is

useful when you, for example, look at how events (which are nothing other than sets) are

defined in probability theory. Namely, if an event 𝐴 is a subset of another event 𝐵, then

the occurrence of 𝐴 implies that 𝐵 also occurs.

Imagine a random experiment where a die is thrown once and the rolled number is checked.

We can define events

𝐸 B {2, 4, 6} and 𝑆 B {6}

as the events that occurs when the number is even or is a 6.

We can clearly see, that 𝑆 ⊆ 𝐸. What this means, is that whenever a 6 is rolled and event

𝑆 occurs, the 6 is also even, meaning 𝐸 also occurs. In other words, the occurrence of 𝑆

implies the occurrence of 𝐸.

105

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

There is another way to characterize set equality without needing the notion of subsets.

Theorem 4.18 (Set Equality with Predicates). Let 𝐴 = {𝑥 | 𝜑 (𝑥)} and 𝐵 = {𝑥 | 𝜓 (𝑥)} be two sets
that are produced by predicates 𝜑 and𝜓 respectively. Then

𝐴 = 𝐵 ↔ ∀𝑥 : 𝜑 (𝑥) ↔ 𝜓 (𝑥) .

Proof. Again, we prove the two directions of the equivalence.

→: Let 𝐴 = 𝐵. Then every 𝑥 ∈ 𝐴 satisfies both 𝜑 and𝜓 because it is also an element of 𝐵. Every

𝑥 ∉ 𝐴 is also not in 𝐵 and therefore 𝜑 (𝑥) = 𝜓 (𝑥) = ⊥ in this case. From 𝜑 and 𝜓 always

evaluating to the same value for every 𝑥 , we can conclude that 𝜑 ≡ 𝜓 .

←: Let 𝜑 and 𝜓 be equivalent predicates. Then for every 𝑥 it holds 𝜑 (𝑥) ↔ 𝜓 (𝑥). So, if 𝑥
satisfies both of them, it is also an element of both sets 𝐴 and 𝐵 and in the other case, it is

neither element of 𝐴 nor of 𝐵. Therefore, 𝑥 is either in both sets or none of them. Thus,

𝐴 = 𝐵. □

� In Other Words: (Dis-) Proving Equality Using Predicates

This approach can be especially helpful if the predicates of the two sets you are examining

are similar or easily transformed into one another. In this case, you would use the laws

that you encountered in the previous chapters.

If you remember, we still have a proof to catch up on which we now finally can do. The claim

was that 𝐴 \ 𝐵 = 𝐴 ∩ 𝐵 (Theorem 4.12).

Proof: Difference as complement. We use the first approach from above and prove two directions.

⊆: Let 𝑥 ∈ 𝐴 \ 𝐵. Then, by definition of set difference, we get 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵. From the latter,

we can deduce 𝑥 ∈ 𝐵 which, in turn, together with 𝑥 ∈ 𝐴 yields 𝑥 ∈ 𝐴 ∩ 𝐵.

⊇: Let 𝑥 ∈ 𝐴 ∩ 𝐵. Then, by definition of intersection, we get 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵. From the latter,

we can deduce 𝑥 ∉ 𝐵. Again, combining 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵, we get 𝑥 ∈ 𝐴 \ 𝐵. □

b Checkpoint 4.19: (Dis-) Proving Equality of Sets

Make sure that you understand both approaches of how to show that two sets are equal.

Try it out for yourself:

• Show that {𝑛 ∈ N | 𝑛 < 43} = {𝑛 ∈ N | 𝑛 ≤ 42}.
• Show that Z ≠ N.

Operators for More than Two Sets

Sometimes we have large expressions with unions or intersections that can contain any number

of or even infinitely many sets. Therefore, we need an easy way to express such terms which we

want to give with the next definitions.

106

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Definition 4.20 (Arbitrary Intersection and Union). We have different ways of abbreviating
intersections and unions.

(1) Let 𝐼 be a set containing sets, that is, every 𝐴 ∈ 𝐼 is a set. Then⋂
𝐴∈𝐼

𝐴 B {𝑥 | ∀𝐴 ∈ 𝐼 : 𝑥 ∈ 𝐴} and
⋃
𝐴∈𝐼

𝐴 B {𝑥 | ∃𝐴 ∈ 𝐼 : 𝑥 ∈ 𝐴}

denote the intersection or the union, respectively, of all sets that are in 𝐼 .

(2) Let 𝐼 be a subset of the integer numbers, that is 𝐼 ⊆ Z (It also works with the natural numbers
N). Furthermore, let 𝐴𝑖 be a set for every 𝑖 ∈ 𝐼 . In this case, we call 𝐼 an index set because it
contains the possible indices for the set sequence. Then⋂

𝑖∈𝐼
𝐴𝑖 =

⋂
{𝐴𝑖 | 𝑖 ∈ 𝐼 } and

⋃
𝑖∈𝐼

𝐴𝑖 =
⋃
{𝐴𝑖 | 𝑖 ∈ 𝐼 }

denote the intersection or the union, respectively, of all sets 𝐴𝑖 with 𝑖 ∈ 𝐼 .

(3) If, in the above case, 𝐼 is an ongoing sequence of numbers starting at 𝑎 ∈ Z and ending at
𝑏 ∈ Z, we can also write

𝑏⋂
𝑖=𝑎

𝐴𝑖 =
⋂
{𝐴𝑖 | 𝑎 ≤ 𝑖 ≤ 𝑏} or

𝑏⋃
𝑖=𝑎

𝐴𝑖 =
⋃
{𝐴𝑖 | 𝑎 ≤ 𝑖 ≤ 𝑏}

< Example 4.21: Arbitrary Intersections and Unions

For each of the three ways, we take a look at notations in action.

(1) Let 𝐼 = {{♥, ♠, ♦} , {♦, ♣} , {♥, ♣, ♦}}. Then⋂
𝐴∈𝐼

𝐴 = {♥, ♠, ♦} ∩ {♦, ♣} ∩ {♥, ♣, ♦} = {♦} ,⋃
𝐴∈𝐼

𝐴 = {♥, ♠, ♦} ∪ {♦, ♣} ∪ {♥, ♣, ♦} = {♥, ♠, ♦, ♣}

(2) Let 𝐼 = {1, 2, 3} and 𝐴𝑖 = {𝑖, 𝑖 + 1, 𝑖 + 2} (for example, 𝐴1 = {1, 2, 3}). Then we have⋂
𝑖∈𝐼

𝐴𝑖 = {1, 2, 3} ∩ {2, 3, 4} ∩ {3, 4, 5} = {3} ,⋃
𝑖∈𝐼

𝐴𝑖 = {1, 2, 3} ∪ {2, 3, 4} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}

(3) Let 𝐴𝑖 be the same sets as in case (2). Then

3⋂
𝑖=1

𝐴𝑖 = {3} and

3⋃
𝑖=1

𝐴𝑖 = {1, 2, 3, 4, 5}

107

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Ç Going Beyond: Membership of Set Union

Can you find a formal definition for 𝑥 ∈ ⋃𝑖∈𝐼 𝐴𝑖 that only uses first-order logic with set

membership?

4.1.3 Tuples

We have now encountered sets as constructs that can hold any number of distinct and unordered

objects. This is useful in many cases; however, sometimes, the order of elements is important.

For example, consider the set containing the last six presidents of the United States of America.
2

That would be

{Obama, Biden, Bush,Trump,Clinton} .

As the order of elements in a set does not matter, this is a correct representation.

But hopefully, you will notice two things: first, that is not the order they were in office. However,

in the current context, where the set should describe the last six US presidents, we might want

that information preserved in the notation.

The second problem is that the set only has five elements which, at first glance, is remarkable for

a set containing the last six American presidents. So who is missing? Correct, it is the second

Bush. And we have also seen the reason for this before: in our notation, we cannot distinguish

the Bushes, meaning Bush = Bush, which is why the name only occurs once in set notation. But

this is also not a suitable solution for our problem, we want to write down the six last presidents

in order.

Luckily, mathematicians have come up with a clever way to achieve this:

Definition 4.22 (Tuple). A tuple is an ordered collection of any finite number of objects. In
contrast to sets, these objects do not need to be distinct. We write

(𝑎1, 𝑎2, . . . , 𝑎𝑛)

for a tuple with the elements 𝑎1 to 𝑎𝑛 for 𝑖 = 1 to 𝑛 ∈ N.
A tuple with two elements is often called a pair and one containing three elements is called a
triple.

Finally, we have a tool to write down the six last US presidents:

(Biden,Trump,Obama, Bush,Clinton, Bush)

This time, the order is correct and the tuple contains both Bushes.

To reiterate the properties of tuples, we take another look, this time in a more mathematical

context.

2https://en.wikipedia.org/wiki/List_of_presidents_of_the_United_States

108

https://en.wikipedia.org/wiki/List_of_presidents_of_the_United_States

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

� In Other Words: Tuples and Coordinates

Consider the coordinate system of the real plane R2. In school, you may have encountered

it when drawing function graphs. It contains points which are, in fact, nothing other than

tuples.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

𝑥

𝑦

As you can see in the figure above, the tuple (1, 2) is not the same as (2, 1). The meaning

of the numbers (whether they are the 𝑥 or 𝑦 value) depends on their position in the tuple.

Also, (1, 1) is not the same as (1) as it would be in a set context. A point with only one

coordinate does not make sense here; they always need two coordinates.

Having defined tuples, we can now take a look at another very important set operator:

Definition 4.23 (Cartesian Product). Let 𝐴 and 𝐵 be sets. Then we define

𝐴 × 𝐵 B {(𝑎, 𝑏) | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}

as the cartesian product of 𝐴 and 𝐵.

That definition might look a little overwhelming but if we try to describe what it does in words, it

becomes rather harmless.

𝐴×𝐵 combines every single element 𝑎 ∈ 𝐴 with every element 𝑏 ∈ 𝐵 and puts those combinations

into a tuple. That makes 𝐴 × 𝐵 a set containing only tuples where the first component is an

element of 𝐴 and the second one is an element of 𝐵.

109

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

< Example 4.24: Playing Cards

Earlier, we talked about card faces 𝐹 = {♥, ♦, ♣, ♠}. Using the cartesian product we now can

expand to get a representation of whole cards. We only need one additional set, namely

the card values 𝑉 B {2, 3, 4, 5, 6, 7, 8, 9, 10, 𝐽 ,𝑄, 𝐾,𝐴}. Herewith, we can now produce

𝐶 B 𝐹 ×𝑉
= {♥, ♦, ♣, ♠} × {2, 3, 4, 5, 6, 7, 8, 9, 10, 𝐽 ,𝑄, 𝐾,𝐴}
= {(♥, 2), . . . , (♥, 𝐴), (♦, 2), . . . , (♦, 𝐴), (♠, 2), . . . , (♠, 𝐴), (♣, 2), . . . , (♣, 𝐴)}

where every tuple in 𝐶 can be interpreted as a card with the face at its first position and

the value at its second position.

However, the cartesian product is not only able to combine two sets. We can extend it in such a

way that it can combine an arbitrary but finite amount of sets (as we demand that tuples only

have finitely many elements). How does this work?

Look at the expression

𝐴 × 𝐵 ×𝐶

where 𝐴, 𝐵, and 𝐶 are sets. All other operators you have encountered until now had an implicit

precedence rule when parentheses were omitted. For example, 1000 + 300 + 30 + 7 would actually

be (((1000 + 300) + 30) + 7), as we defined + to be left associative. In the case of ×, we do not

want that kind of rule as it would disable us from stating the following definition:

Definition 4.25 (Cartesian Product for Multiple Sets). Let 𝐴0, . . . , 𝐴𝑛 be sets for 𝑛 ∈ N. We
define

𝐴0 × · · · ×𝐴𝑛 B {(𝑎0, . . . , 𝑎𝑛) | 𝑎0 ∈ 𝐴0, . . . 𝑎𝑛 ∈ 𝐴𝑛}

as the cartesian product of 𝐴0, . . . , 𝐴𝑛 .

This means that the operator is not binary but rather 𝑛-ary, where 𝑛 is the number of sets to

combine.

Finally, we want to introduce a little bit of syntactic sugar in case we use the cartesian product on

only one set multiple times: if 𝐴 is a set, then we can simply write

𝐴𝑛
instead of 𝐴 × · · · ×𝐴︸ ︷︷ ︸

𝑛 times

.

You might now be wondering how many tuples are in such a cartesian product, and you might

even have an idea what the answer is. Unfortunately, though, we do not yet have the tools to

tackle this, so we need to postpone this until a later point.

110

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

< Example 4.26: Subjects

Let’s say we have the following three sets and for your final exam, you need one subject

out of every one of these. What are all possible combinations for how to take your exams?

(For the sake of simplicity, we also assume that we are interested in the temporal order of

the exams.)

NaturalSciences = {Maths,CS} ,
Languages = {German, English, French} ,

SocialSciences = {Geography,History}

We can get them by finding out

NaturalSciences × Languages × SocialSciences

which is equal to the set

{(Maths,German,Geography), (Maths,German,History),
(Maths, English,Geography), (Maths, English,History),

(Maths, French,Geography), . . . }

Just like before, we combine all elements of a set with every element of the remaining sets.

This is hugely different if we were to consider the same expression but with parentheses:

(NaturalSciences × Languages) × SocialSciences
= {((Maths,German),Geography), ((Maths, English),Geography),
((Maths, French),Geography), ((CS,German),Geography),
((CS, English),Geography), ((CS, French),Geography), . . . },

where we first get the cartesian product NaturalSciences × Languages and then combine

those tuples with all social sciences. This gives us tuples which have tuples and social

sciences as elements. In fact, every tuple of the operation with parentheses has these two

elements, whereas without them, as we have seen above, the tuples have three elements

each.

111

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

4.1.4 Laws of Set Theory

Now that we know sets as well as their operators, we will want to find some useful statements

about them and prove them. This is relatively straightforward, as our definitions rely on the logic

operators we introduced in Lemma 2.21.

The following theorem states all the properties that you have already seen in a propositional logic

context.

Theorem 4.27 (Laws of Set Theory). Let U be the set containing all elements, also called the
universe. Furthermore, let 𝐴, 𝐵 and 𝐶 be sets. The following statements hold:

Commutativity
𝐴 ∪ 𝐵 = 𝐵 ∪𝐴
𝐴 ∩ 𝐵 = 𝐵 ∩𝐴

Associativity
(𝐴 ∪ 𝐵) ∪𝐶 = 𝐴 ∪ (𝐵 ∪𝐶)
(𝐴 ∩ 𝐵) ∩𝐶 = 𝐴 ∩ (𝐵 ∩𝐶)

Distributivity
𝐴 ∪ (𝐵 ∩𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪𝐶)
𝐴 ∩ (𝐵 ∪𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩𝐶)

Identity
𝐴 ∪ ∅ = 𝐴
𝐴 ∩U = 𝐴

Complement laws
𝐴 ∪𝐴 = U
𝐴 ∩𝐴 = ∅

Idempotence laws
𝐴 ∪𝐴 = 𝐴

𝐴 ∩𝐴 = 𝐴

Domination laws
𝐴 ∪U = U
𝐴 ∩ ∅ = ∅

Absorption laws
𝐴 ∪ (𝐴 ∩ 𝐵) = 𝐴
𝐴 ∩ (𝐴 ∪ 𝐵) = 𝐴

De Morgan’s laws
𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵
𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵

Double complement law
𝐴 = 𝐴

Proof. Over the course of this proof, let 𝐴 = {𝑥 | 𝜑 (𝑥)}, 𝐵 = {𝑥 | 𝜓 (𝑥)} and 𝐶 = {𝑥 | 𝜒 (𝑥)} for
the respective predicates 𝜑 ,𝜓 and 𝜒 . Please remember that we defined 𝑥 ∈ 𝐴 ≡ 𝜑 (𝑥) as we will
use this quite frequently.

Commutativity
We know that ∧ and ∨ are commutative and therefore we get

𝐴 ∪ 𝐵 = {𝑥 | 𝜑 (𝑥) ∨𝜓 (𝑥)} = {𝑥 | 𝜓 (𝑥) ∨ 𝜑 (𝑥)} = 𝐵 ∪𝐴
𝐴 ∩ 𝐵 = {𝑥 | 𝜑 (𝑥) ∧𝜓 (𝑥)} = {𝑥 | 𝜓 (𝑥) ∧ 𝜑 (𝑥)} = 𝐵 ∩𝐴

Associativity
We know that ∧ and ∨ are also associative which yields

(𝐴 ∪ 𝐵) ∪𝐶 = {𝑥 | (𝜑 (𝑥) ∨𝜓 (𝑥)) ∨ 𝜒 (𝑥)} = {𝑥 | 𝜑 (𝑥) ∨ (𝜓 (𝑥) ∨ 𝜒 (𝑥))} = 𝐴 ∪ (𝐵 ∪𝐶)
(𝐴 ∩ 𝐵) ∩𝐶 = {𝑥 | (𝜑 (𝑥) ∧𝜓 (𝑥)) ∧ 𝜒 (𝑥)} = {𝑥 | 𝜑 (𝑥) ∧ (𝜓 (𝑥) ∧ 𝜒 (𝑥))} = 𝐴 ∩ (𝐵 ∩𝐶)

Distributivity
Follows similarly to (a) and (b).

112

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Identity
As the predicate describing ∅ is ⊥, we can write

𝐴 ∪ ∅ = {𝑥 | 𝜑 (𝑥) ∨ ⊥} = {𝑥 | 𝜑 (𝑥)} = 𝐴.

This follows by the identity law of ∨.
Similarly, we show the second equation. The predicate ofU is simply ⊤, as it represents
the set that contains all objects and ⊤ is the predicate that is true for every object. So we get

𝐴 ∩U = {𝑥 | 𝜑 (𝑥) ∧ ⊤} = {𝑥 | 𝜑 (𝑥)} = 𝐴.

Again, we use the identity law for ∧.

Complement laws
We can write

𝐴 ∪𝐴 = {𝑥 | 𝜑 (𝑥) ∨ ¬𝜑 (𝑥)} = {𝑥 | ⊤} = U
and

𝐴 ∩𝐴 = {𝑥 | 𝜑 (𝑥) ∧ ¬𝜑 (𝑥)} = {𝑥 | ⊥} = ∅
using the negation laws for ∧ and ∨.

The remaining proofs are left to you as an exercise. □

Another useful fact concerns the union of two sets. Namely, we aim to separate the union set into

disjoint subsets that enable us to make further observations.

𝐴 𝐵

From this diagram, we can easily identify three subsets that must be disjoint. This leads us to the

following statement:

Theorem 4.28 (Disjoint Decomposition of Union). Let 𝐴 and 𝐵 be sets. Then

𝐴 ∪ 𝐵 = (𝐴 \ 𝐵) ∪ (𝐵 \𝐴) ∪ (𝐴 ∩ 𝐵)

is a disjoint union, meaning that the three sets are pairwise disjoint.

First, what does “pairwise” mean?

“pairwise” is an expression that is commonly used to say that a property holds for each possible pair
in a range of specified objects. If we consider our current context, we (claim to) have three pairwise
disjoint sets, so each possible pair of those sets is disjoint: (𝐴\𝐵)∩(𝐵\𝐴) = ∅, (𝐴\𝐵)∩(𝐴∩𝐵) = ∅,
and (𝐵 \𝐴) ∩ (𝐴 ∩ 𝐵) = ∅.

113

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Proof. We first show equality and then disjointness.

⊆: Let 𝑥 ∈ 𝐴 ∪ 𝐵. Then, by definition, 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵. We look at both cases. First, let 𝑥 ∈ 𝐴.
Then it is possible that 𝑥 ∈ 𝐵 or 𝑥 ∉ 𝐵. In the first case, we can conclude 𝑥 ∈ 𝐴 ∩ 𝐵 because

then 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵. In the second case, we get 𝑥 ∈ 𝐴 \ 𝐵 because 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵. Now

let 𝑥 ∈ 𝐵. Again, we determine whether 𝑥 ∈ 𝐴 or 𝑥 ∉ 𝐴. If 𝑥 ∈ 𝐴, then by 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴
we conclude 𝑥 ∈ 𝐴 ∩ 𝐵; if 𝑥 ∉ 𝐴 then by definition we have 𝑥 ∈ 𝐵 \ 𝐴. Therefore,

𝐴 ∪ 𝐵 ⊆ (𝐴 \ 𝐵) ∪ (𝐵 \𝐴) ∪ (𝐴 ∩ 𝐵).

⊇: Let 𝑥 ∈ (𝐴 \ 𝐵) ∪ (𝐵 \𝐴) ∪ (𝐴 ∩ 𝐵). Then 𝑥 is an element of at least one of those three sets.

If 𝑥 ∈ 𝐴 \ 𝐵, then 𝑥 ∈ 𝐴 and therefore 𝑥 ∈ 𝐴 ∪ 𝐵. If, on the other hand, 𝑥 ∈ 𝐵 \ 𝐴, then
by definition 𝑥 ∈ 𝐵 and therefore 𝑥 ∈ 𝐴 ∪ 𝐵. For the case 𝑥 ∈ 𝐴 ∩ 𝐵 we can also conclude

𝑥 ∈ 𝐴 ∪ 𝐵 because 𝑥 is both in 𝐴 and 𝐵. Hence, (𝐴 \ 𝐵) ∪ (𝐵 \𝐴) ∪ (𝐴 ∩ 𝐵) ⊆ 𝐴 ∪ 𝐵.

Another way of proving is to use the laws that were introduced before. You are encouraged to try

this out for yourself. We have now proven that the sets are equal, but we still need to show that

the three sets are pairwise disjoint. In the definition of “pairwise” above, we have already seen

our three proof obligations. We prove these by contradiction.

• We assume (𝐴 \ 𝐵) ∩ (𝐵 \𝐴) ≠ ∅, meaning that ∃𝑥 ∈ (𝐴 \ 𝐵) ∩ (𝐵 \𝐴).
Then by the definitions of the operators, we get 𝑥 ∈ 𝐴 \𝐵 ∧𝑥 ∈ 𝐵 \𝐴. If we further simplify

this, we can follow 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ∉ 𝐴 . There lies a contradiction (even two

contradictions), because neither 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐴 nor 𝑥 ∈ 𝐵 ∧ 𝑥 ∉ 𝐵 is possible. Therefore, the

assumption must have been false, hence (𝐴 \ 𝐵) ∩ (𝐵 \𝐴) = ∅.
The remaining two cases follow similarly.

• We assume (𝐴 \ 𝐵) ∩ (𝐴 ∩ 𝐵) ≠ ∅, meaning that ∃𝑥 ∈ (𝐴 \ 𝐵) ∩ (𝐴 ∩ 𝐵).
Again, we use the definitions of the operators, which yields 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵
 . This time, the contradiction is 𝑥 ∈ 𝐵 ∧ 𝑥 ∉ 𝐵, meaning the converse of the assumption

must hold, giving us (𝐴 \ 𝐵) ∩ (𝐴 ∩ 𝐵) = ∅.

• We assume (𝐵 \𝐴) ∩ (𝐴 ∩ 𝐵) ≠ ∅, meaning that ∃𝑥 ∈ (𝐵 \𝐴) ∩ (𝐴 ∩ 𝐵).
As this case is analogous to the previous one, you are encouraged to try it out for yourself.

Now we showed that the three sets are pairwise disjoint. □

As you might have noticed, we used a lightning symbol wherever we can derive a contradiction.

This is to make clear, where exactly we arrived at a false statement. Be careful though, this is not
to be used when proving a statement by contraposition as there is no contradiction there.

114

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

4.1.5 Cardinality of Finite Sets

There is one question about sets that we have completely ignored so far and that is the question

about the number of elements a set contains. For infinite sets, we need to push this question

further aback, because we first need some more prerequisites. But we are already able to examine

finite sets.

Definition 4.29. Let 𝐴 be a set with finitely many elements. We call the number of elements in 𝐴
the cardinality of 𝐴 and denote it with

|𝐴|.

Sometimes, you will also see the notation #𝐴 used instead.

If there are only finitely many elements in a set, we can simply count them in order to get the

cardinality.

< Example 4.30: Cardinality of Finite Sets

• | {1, 2, 3} | = 3 as it contains 3 distinct elements.

• | {1, 2, 3, 2} | = 3 as every element is counted only once, resulting in the same set as

before.

• | {{1, 2, 3}} | = 1 as the set contains one set. The cardinality of the inner set would be 3.

• |∅| = 0 as it contains 0 elements.

As we have defined several operators above, we are interested in how they influence the cardinality

of the resulting sets. For finite sets, we can make a few interesting observations, starting with the

following rule.

Theorem 4.31 (Cardinality of Disjoint Sets). Let 𝐴 and 𝐵 be disjoint sets, that is, 𝐴 ∩ 𝐵 = ∅. Then

|𝐴 ∪ 𝐵 | = |𝐴| + |𝐵 |.

Proof. Let 𝑥 ∈ 𝐴 ∪ 𝐵. Then there are two cases. First, if 𝑥 ∈ 𝐴, then 𝑥 ∉ 𝐵. The same holds vice

versa, namely 𝑥 ∈ 𝐵 → 𝑥 ∉ 𝐴. Therefore, no element gets lost when creating the union 𝐴 ∪ 𝐵 as

all elements are distinct. So the cardinality of the union is the sum of the distinct elements of 𝐴

and 𝐵 from which follows that |𝐴 ∪ 𝐵 | = |𝐴| + |𝐵 |. □

Theorem 4.32 (Cardinality Properties). Let 𝐴 and 𝐵 be finite sets. Then these statements hold:

(a) |𝐴 ∪ 𝐵 | + |𝐴 ∩ 𝐵 | = |𝐴| + |𝐵 |

(b) 𝐴 ∩ 𝐵 = ∅ ↔ |𝐴 ∪ 𝐵 | = |𝐴| + |𝐵 |

(c) 𝐴 ⊆ 𝐵 ↔ |𝐵 \𝐴| = |𝐵 | − |𝐴|

(d) 𝐴 ⊆ 𝐵 → |𝐴| ≤ |𝐵 |

(e) 𝐴 ⊊ 𝐵 → |𝐴| < |𝐵 |

115

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Proof. We prove each statement separately:

(a) With the theorem of the disjoint decomposition (Theorem 4.28) and by applying Theo-

rem 4.12 we get 𝐴 ∪ 𝐵 = (𝐴 ∩ 𝐵) ∪ (𝐵 ∩𝐴) ∪ (𝐴 ∩ 𝐵). As the three sets are disjoint, we can
follow that

|𝐴 ∪ 𝐵 | = |𝐴 ∩ 𝐵 | + |𝐵 ∩𝐴| + |𝐴 ∩ 𝐵 |.

We now add |𝐴 ∩ 𝐵 | on both sides, yielding

|𝐴 ∪ 𝐵 | + |𝐴 ∩ 𝐵 | = |𝐴 ∩ 𝐵 | + |𝐴 ∩ 𝐵 | + |𝐵 ∩𝐴| + |𝐴 ∩ 𝐵 |.

The left side already looks promising, leaving us with the right side of the equation to focus

on. If you look closely, you will notice that there are two pairs you can separate. On the

one hand, we have |𝐴 ∩ 𝐵 | + |𝐴 ∩ 𝐵 | and on the other hand, there is |𝐵 ∩𝐴| + |𝐴 ∩ 𝐵 |.
The important fact here is that the sets both sums concern are disjoint, meaning (𝐴 ∩ 𝐵) ∩
(𝐴 ∩ 𝐵) = ∅ = (𝐵 ∩𝐴) ∩ (𝐴 ∩ 𝐵). Therefore, we can again apply Theorem 4.31 and get

|𝐴 ∪ 𝐵 | + |𝐴 ∩ 𝐵 | = | (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐵) | + |(𝐵 ∩𝐴) ∪ (𝐴 ∩ 𝐵) |.

Now we are almost finished, we only need to show that (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐵) = 𝐴 and

(𝐵 ∩𝐴) ∪ (𝐴 ∩ 𝐵) = 𝐵. We do this by using the laws from the previous section.

(𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐵) = 𝐴 ∪ (𝐵 ∩ 𝐵) | Distributivity
= 𝐴 ∪ ∅ | Complement law

= 𝐴 | Identity

and we conclude the same for 𝐵 analogously. Applied to the last equation, this yields

|𝐴 ∪ 𝐵 | + |𝐴 ∩ 𝐵 | = |𝐴| + |𝐵 |.

(b) We prove the two directions.

→: Let 𝐴 ∩ 𝐵 = ∅. Then by (a), it follows directly that

|𝐴| + |𝐵 | = |𝐴 ∪ 𝐵 | + |𝐴 ∩ 𝐵 |
= |𝐴 ∪ 𝐵 | + |∅| | 𝐴 ∩ 𝐵 = ∅
= |𝐴 ∪ 𝐵 | + 0
= |𝐴 ∪ 𝐵 |

←: Let |𝐴| + |𝐵 | = |𝐴 ∪ 𝐵 |. Then by (a), we can follow

|𝐴| + |𝐵 | = |𝐴 ∪ 𝐵 | + |𝐴 ∩ 𝐵 |

which, in turn, gives us

|𝐴 ∪ 𝐵 | = |𝐴 ∪ 𝐵 | + |𝐴 ∩ 𝐵 |.

This can only be true if |𝐴 ∩ 𝐵 | = 0, so 𝐴 ∩ 𝐵 = ∅.

116

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

For the remaining statements, only a short proof sketch is layed out that is able to give an intuition

for how to proof basically works. It is left to you to work out the formalities.

(c) Let 𝐴 ⊆ 𝐵. So, 𝐵 \𝐴 contains every element of 𝐵 that is not in 𝐴. As it does not contain any

elements that were not in 𝐵 in the first place, the number of elements can be counted as the

elements of 𝐵 and then subtracting the elements that are also in 𝐴. Thus, |𝐵 \𝐴| = |𝐵 | − |𝐴|.
This only works, because both sets are finite.

(d) Let 𝐴 ⊆ 𝐵. We prove this statement by contraposition, so we show |𝐴| > |𝐵 | → 𝐴 ⊈ 𝐵. So,

let |𝐴| > |𝐵 |. Then, even if 𝐴 contains every element of 𝐵 there must be at least one more

element in 𝐴 that is not in 𝐵. Therefore, 𝐴 ⊈ 𝐵.

(e) 𝐴 ⊊ 𝐵 → |𝐴| < |𝐵 | We only need to show 𝐴 ⊊ 𝐵 → |𝐴| ≠ |𝐵 | as |𝐴| ≤ |𝐵 | already follows

from (c) as 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵.
We prove this by contradiction. Let 𝐴 ⊊ 𝐵 and |𝐴| = |𝐵 |. Then, because of the subset

relationship, 𝐴 must contain every element of 𝐵 . But this violates the property of the

proper subset because there is no element unique to 𝐵. Therefore, |𝐴| ≠ |𝐵 |. □

In a previous section, we have dealt with the cartesian product and raised the question how many

elements, that is, tuples, it contains. Now having defined cardinality, we can finally formalize the

problem and find an answer.

First, let’s consider only a binary cartesian product, that is, combining two sets. Let’s further

assume that the first one, 𝐴, has 3 and the second one, 𝐵, has 4 elements. Now, in order to get the

cartesian product 𝐴 × 𝐵, we have to combine each of the 3 elements of 𝐴 with each of the four

elements of 𝐵. This would give us 12 elements for 𝐴 × 𝐵, meaning |𝐴 × 𝐵 | = 12.

Before you read on, try to verify the intuition explained in the paragraph above for products

consisting of three, four, or even more sets and write down a statement. Hopefully, you will arrive

at the same result as the following theorem.

Theorem 4.33 (Cardinality of the Cartesian Product). Let 𝑛 ∈ N and 𝐴0, . . . , 𝐴𝑛 be sets. Then

|𝐴0 × · · · ×𝐴𝑛 | = |𝐴0 | × · · · × |𝐴𝑛 |,

where on the right-hand side, × denotes the multiplication of natural numbers.

Unfortunately, we do not have the means to prove this yet. For this, you need a new proof concept

which is described in the last chapter.

117

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

4.1.6 Power Sets

Previously, we have introduced the notion of subsets. An interesting question you might come up

with is: what are all the possible subsets any set can have? And how many of them can exist? You

could even go further: how many subsets with a given number of elements does any set have?

To answer all these questions, we need another important term from set theory which we define

in the following.

Definition 4.34 (Power Set). Let 𝐴 be a set. Then we define

P(𝐴) B {𝑀 | 𝑀 ⊆ 𝐴}

as the power set of 𝐴. Other common notations are 2𝐴 or𝔓(𝐴).

What this means is that P(𝐴) is a set that contains every subset of 𝐴 and nothing else.

Having defined the power set, we first want to look at some of its simple properties.

Theorem 4.35. Let 𝐴 be a set. Then

∅ ∈ P(𝐴) and 𝐴 ∈ P(𝐴) .

Youmight have stumbled over this statement before, namely in Checkpoint 4.15 after the definition

of the subset property. Now, with this theorem, we give an answer to the question that was asked

back there.

Proof. In order to prove for a set to be in the powerset of 𝐴, it is sufficient to show that it is a

subset of 𝐴.

So first, take ∅. For every 𝑥 , by definition, 𝑥 ∈ ∅ is false, so the implication 𝑥 ∈ ∅ → 𝑥 ∈ 𝐴 is true.

Thus, it follows ∅ ⊆ 𝐴→ ∅ ∈ P(𝐴).
Now we take a look at the set 𝐴 itself. For every 𝑥 ∈ 𝐴 it holds that 𝑥 ∈ 𝐴→ 𝑥 ∈ 𝐴. So, we can
conclude that 𝐴 ⊆ 𝐴→ 𝐴 ∈ P(𝐴). □

< Example 4.36: Power Sets

• P({1, 2, 3}) = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} {1, 2, 3}}
• P({1, 2}) = {∅, {1} , {2} , {1, 2}}
• P({{1, 2}}) = {∅, {1, 2}}
• P({1}) = {∅, {1}}
• P(∅) = {∅}

Now, we can take care of the questions about the cardinality of power sets from before. Unfortu-

nately, we still lack the strategies to prove this, however we can get an intuition and formulate

the statement. We postpone the proof to Section 5.1.

If you take a look at the examples above, you might notice a pattern. Before you read on, please

try to find it for yourself. If the examples are not sufficient, try to write down the powerset of a

set with a cardinality of four (for example the set 𝐹 of all card faces).

118

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

We are looking for a relationship between the cardinality of any set to the cardinality of its power

set. So, according to the example above, we can make the following observations:

• If a set has a cardinality of 3, its power set seems to have 8 elements.

• If a set has a cardinality of 2, its power set seems to only have 4 elements.

• If a set has only one element, its power set seems to have 2 elements.

• The set containing 0 elements, that is, the empty set ∅ has a power set of cardinality 1.

This calls for the powers of 2: they give us

• | {1, 2, 3} | = 3, hence |P({1, 2, 3}) | = 2
3 = 8

• | {1, 2} | = 2, hence |P({1, 2}) | = 2
2 = 4

• | {1} | = 1, hence |P({1}) | = 2
1 = 2

• |∅| = 0, hence |P(∅) | = 2
0 = 1

It is important to add that this kind of intuition cannot replace a formal proof in any case. The

ideas above are considerations that you might come up with and should formulate yourself when

you are on your way exploring a problem for yourself. Developing such an intuition can be a

good first step before you formalize and then, at last, prove a statement.

Having completed this step now, we want to formalize the claim that we have derived from our

observations above.

Theorem 4.37. Let 𝐴 be a set of cardinality 𝑛 ∈ N, that is |𝐴| = 𝑛. Then

|P(𝐴) | = 2
𝑛 .

We might not be able to prove this yet, but at least the statement gives an intuition why the

powerset of a set 𝐴 is also commonly noted as 2
𝐴
.

Ç Going Beyond: Exploring Further

The second question we asked at the beginning of this paragraph is a bit more tricky

to answer: given a set of cardinality 𝑛 ∈ N, how many subsets with a given number of

elements 𝑖 ∈ N are there?

When trying to solve this problem, try to proceed as described above. First, explore. Run

the numbers on concrete examples. Then, order your thoughts and think of possible

patterns or relations. Finally, try to formulate the claim you came up with. The proof can

wait until the last chapter.

119

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Ç Going Beyond: Power Sets in the Wild

Power sets are an important mathematical term and you will most likely run across them

quite often. Here is a brief (and thus by far not complete) overview of where they are

present.

• The power set is relevant to probability theory. It can define the space of possible events

of a random experiment. But on a closer look, this needs some refining. Therefore the

branch of measure theory concerns itself with constructing algebras on the basis of the

power set in order to be able to define a probability measure on the event space.

• It also plays a crucial role in answering the question of the cardinality of infinite sets:

does every infinite set have the same cardinality, or are there still differences, that is,

different levels of infinite? In particular, Cantor made an important statement on the

connection between power sets and infinite cardinality. We look at this problem again

in Section 4.2.5.

• It is also central to the next chapter about relations as all its definitions are based on the

power set.

120

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

4.2 Relations

� Chapter Goals

In this chapter, we discuss the fundamental concepts of relations. You will learn about

• What relations are and how to formally write them down

• Important properties of relations

• Using relations to classify the cardinality of infinite sets

In computer science, we often work with objects that are somehow connected or related to one

another. One of the best-known examples for this are two arbitrary numbers, for which we can

say that they are equal or one of them is greater than the other. Consider 13 and 37: obviously,

13 ≤ 37 holds while 37 ≤ 13 is wrong. Mathematically speaking, ≤ is a relation which connects

13 to 37 but not the other way around.

Another way of looking at relations: think of a set𝑊 which contains different words (e.g. “apple,”

“beaver,” “car,” . . .). We can construct a relation that connects each word to the number of letters

it consists of. This relation contains pairs like (“apple”, 5), (“beaver”, 6) and (“car”, 3). As you can

see, relations don’t necessarily connect objects from one set to objects from the same set, but can

also connect objects from one set to objects from a different set.

To keep things simple, we only focus on binary relations in this chapter even though other kinds

of relations exist. Let’s take a look at their mathematical definition:

Definition 4.38 (Binary Relation). Let 𝐴 and 𝐵 be arbitrary sets.

A subset R ⊆ 𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵} is called binary relation on 𝐴 and 𝐵.
Elements of the relation (𝑎, 𝑏) ∈ R are often written in so-called infix notation as 𝑎R𝑏.
The set 𝐴 is referred to as source set, 𝐵 is referred to as target set.
If 𝐴 = 𝐵 holds, R is said to be defined on the universal set 𝐴.

As you can see, relations are defined as subsets of the Cartesian product of their source and target

set. This means that any binary relation is a set of ordered pairs where the first component stems

from the source and the second component stems from the target set. If a pair of elements (𝑎, 𝑏)
is contained in a relation R, we can say “𝑎 is related to 𝑏 regarding R.”
You probably have already used the infix notation for relations without even noticing: 13 ≤ 37 is

one example where it’s common to put the relation as an operator in between the two related

elements.

Ç Going Beyond: 𝑛-ary Relations

Apart from binary relations, there are also relations connecting more than just two objects.

A relation defined on 𝑛 sets 𝑀1, 𝑀2, . . . , 𝑀𝑛 is called 𝑛-ary relation. It is a subset of the

Cartesian product𝑀1 ×𝑀2 × · · · ×𝑀𝑛 , therefore containing 𝑛-tuples.

In practice, such relations are often used in the context of databases (you might have

already heard of the term “relational databases”): For example, we can model a person

as an ordered tuple containing its name, age, address and phone number. A set of such

4-tuples is called 4-ary (quaternary) relation.

121

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Up to this point, our definitions did not consider the actual connections contained in the relation:

{(1,−1)} ⊆ N × Z connects 1 and −1 only, however the source set is not {1} but N and the target

set is not {−1} but Z. Next up, we define some general properties that actually depend on the

elements of the relation.

Definition 4.39 (Domain, Image). Let R ⊆ 𝐴 × 𝐵 be a relation on some sets 𝐴, 𝐵.

The domain of R dom(R) is defined as follows:

dom(R) B {𝑎 ∈ 𝐴 | ∃𝑏 ∈ 𝐵 : (𝑎, 𝑏) ∈ R}

The image of R (also called range of R) im(R) is defined as follows:

im(R) B {𝑏 ∈ 𝐵 | ∃𝑎 ∈ 𝐴 : (𝑎, 𝑏) ∈ R}

The domain of a relation is a (not necessarily proper) subset of the relation’s source set. It contains

all elements from which a connection to some element of the target set starts. Similarly, the image

of a relation is the subset of its target set that contains all elements that some source set element

connects to.

Make sure not to confuse source set with domain: The source set is part of a relation’s definition,
to be precise the set from which all connections originate, while the domain is the subset of the

source set that only contains elements from which at least one connection originates.

< Example 4.40: Binary Relations

Let’s consider a group of students: Alice, Bob, Charly, Dieter and Emily. Mathematically,

we can think of this group as a set 𝑆 containing every student (names abbreviated):

𝑆 = {A, B,C,D, E}

Every student likes him-/herself (except explicitly said differently), but not every student

likes every other student. Below is a list of all students and whom they like apart from

themselves:

• Alice likes Bob and Dieter

• Bob likes Alice

• Charly likes Bob, Dieter and Emily

• Dieter likes Alice, Charly and Emily

• Emily likes nobody, not even herself

We can model this mathematically as a relation R = {(𝑥,𝑦) | 𝑥 likes𝑦} ⊆ 𝑆2 on the set of

students. This relation then contains the following elements:

R = {(A,A), (A, B), (A,D), (B, B), (B,A), (C,C), (C, B),
(C,D), (C, E), (D,D), (D,A), (D,C), (D, E)}

As we defined R on the set 𝑆 , 𝑆 is both the source and target set and therefore also the

universal set of R. The image of R is also equal to 𝑆 , as every student is liked by at

least one other student. Hence, R for each element of 𝑆 contains at least one connection

ending at the respective element. Still, the domain is not equal to 𝑆 as there is no outgoing

connection from Emily. Therefore, the domain is

dom(R) = 𝑆 \ {E} = {A, B,C,D}

122

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Having understood those definitions, we can take a look at four important relations:

Definition 4.41 (Empty Relation). The relation ∅ ⊆ 𝐴 × 𝐵 is called empty relation. It does not
contain any pairs of source and target set elements, hence not connecting any source set elements
to any target set elements. Therefore, dom(∅) = im(∅) = ∅ holds.

Definition 4.42 (Identity Relation). The relation Id𝐴 B {(𝑥, 𝑥) | 𝑥 ∈ 𝐴} ⊆ 𝐴2 on the universal
set 𝐴 is called the identity relation on 𝐴. It connects each element in 𝐴 to itself. Therefore,
dom(Id𝐴) = im(Id𝐴) = 𝐴 holds.

Definition 4.43 (Universal Relation). The relation U𝐴,𝐵 B 𝐴×𝐵 ⊆ 𝐴×𝐵 is called the universal
relation on 𝐴 and 𝐵. It connects each element from 𝐴 to each element in 𝐵. Therefore, both
dom(𝐴 × 𝐵) = 𝐴 and im(𝐴 × 𝐵) = 𝐵 hold.

Definition 4.44 (Inverse Relation). The relation R−1 B {(𝑏, 𝑎) | (𝑎, 𝑏) ∈ R} ⊆ 𝐵 ×𝐴 is called
the inverse relation of R ⊆ 𝐴×𝐵. It contains all connections from R with start and end swapped.
Therefore, both dom(R−1) = im(R) and im(R−1) = dom(R) hold.

< Example 4.45: Important Relations

Let 𝑋 = {1, 2, 3} and 𝑌 = {𝑎, 𝑏, 𝑐}.
The identity relation on 𝑋 is as follows:

Id𝑋 = {(1, 1), (2, 2), (3, 3)}

The universal relation on 𝑋 and 𝑌 is as follows:

U𝑋,𝑌 = {(1, 𝑎), (1, 𝑏), (1, 𝑐), (2, 𝑎), (2, 𝑏), (2, 𝑐), (3, 𝑎), (3, 𝑏), (3, 𝑐)} = 𝑋 × 𝑌

We can get the inverse of U𝑋,𝑌 by swapping the components of every pair in the relation.

This results in the following inverse relation:

U
−1
𝑋,𝑌 = {(𝑎, 1), (𝑏, 1), (𝑐, 1), (𝑎, 2), (𝑏, 2), (𝑐, 2), (𝑎, 3), (𝑏, 3), (𝑐, 3)} = 𝑌 × 𝑋 = U𝑌,𝑋

4.2.1 Notation

In this section, we take a look at different ways of writing down relations. For this, consider the

following relation:

R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}
This way of writing down a relation by explicitly naming every contained pair is called enumer-
ative notation. We already saw this kind of notation in Section 4.1.1 where sets were denoted by

explicitly naming every element. As a relation’s elements are ordered pairs, we are just reapplying

the same idea from set theory to the topic of relations.

Another notation we can carry over from set theory is the predicate notation. The relation R
we just took a look at is the ≤ relation on the universal set 𝐴 = {1, 2, 3}. Therefore, we can also

denote R as follows:

R =
{
(𝑥,𝑦) ∈ 𝐴2

�� 𝑥 ≤ 𝑦}
123

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

One advantage of predicative over enumerative notation is that we are often able to write down

large relations (those that contain many connections) compactly. If we consider the ≤ relation

over N, it is no longer possible to list all contained connections without abbreviations as the

relation contains infinitely many connections.

Apart from notations that rely on the fact that relations are just a special kind of sets, there are

also several relation-specific notations which can be helpful in characterizing relations. The first

one we look at are logical matrices. These work by having a row for each source set element

and a column for each target set element. At each intersection of a row and column, a 1 is placed

if the pair of represented source and target set elements is contained in the relation. We can

represent our example relation R like this:

1 2 3
1 1 1 1

2 0 1 1

3 0 0 1

or also commonly written as
©­«
1 1 1

0 1 1

0 0 1

ª®¬
If you want to see if a source set element 𝑥 is related to a target set element 𝑦, you can look for

the row that represents 𝑥 and for the column that represents 𝑦. If and only if there is a 1 at the

crossing, 𝑥 and 𝑦 are related.

A more space-efficient way of writing down relations is the list notation. It works by listing all

source set elements followed by every target set element they relate to. This is how our example

R looks in list notation:

1 : 1 2 3

2 : 2 3

3 : 3

Another way of visualizing relations are so-called arrow diagrams. These work by listing all

source set elements vertically on the left side and all target set elements similarly on the right

side. After doing so, we can draw arrows from each source set element to its related target set

elements.

1

2

3

1

2

3

Source Set Target Set

Figure 4.46: Arrow diagram for R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

You may notice that such arrow diagrams quickly get cluttered. If a relation is defined on an

identical source and target set—therefore defined on a universal set—we can also represent it as a

directed graph. A graph is a collection of nodes (also called vertices) and edges. Edges always
connect two (not necessarily different) nodes. If for each edge it is defined on which side it starts

and on which it ends, the graph is called directed.

124

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

A relation on a universal set can be represented as a directed graph by first drawing nodes for

each element of the universal set. Afterwards, each pair contained in the relation is drawn as an

arrow that starts at the first component of the pair and ends at the second component.

1 2 3

Figure 4.47: Directed graph representing R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

As it is usually clear that graphs in the context of relations are directed, from now on we only say

“graphs” when referring to “directed graphs.”

< Example 4.48: Graphs of Important Relations

Let again 𝑋 = {1, 2, 3}. The graph of any identity relation only consists of arrows that

start and end at the same node. Therefore, the graph of Id𝑋 looks like this:

1 2 3

In the graph of any universal relation defined on a universal set, there are outgoing arrows

from every node going towards every node (including the one where the arrow started).

Therefore, the graph of U𝑋,𝑋 looks like this:

1

2 3

Remember that you can only draw a graph for a universal relation if the source and target

set match.

b Checkpoint 4.49: Relation Notations

• In Example 4.40, we defined a relation on a group of students. Which kinds of relation

notations were used there? How else can you represent the relation?

• How does the graph of a relation change if the relation is inverted?

125

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

4.2.2 Common Properties

So far, we have only covered general properties of relations that can be applied to most, if not

all, relations. In this section, we take a look at some properties of relations that can be used to

classify different kinds of relations.

Definition 4.50 (Left-Total/Serial Relation).
Let R ⊆ 𝐴 × 𝐵 be a relation on arbitrary sets 𝐴 and 𝐵.

R is left-total or serial if ∀𝑎 ∈ 𝐴 : ∃𝑏 ∈ 𝐵 : 𝑎R𝑏. This is equivalent to dom(R) = 𝐴.

If a relation is left-total, every source set element is connected to at least one element in the target

set. Consider the following two relations defined on the source set {1, 2, 3} and target set {𝑎, 𝑏, 𝑐}:

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✓ left-total

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✗ not left-total

The relation depicted on the right is not left-total, as there is no connection from 3.

Definition 4.51 (Right-Total/Surjective Relation).
Let R ⊆ 𝐴 × 𝐵 be a relation on arbitrary sets 𝐴 and 𝐵.

R is right-total or surjective if ∀𝑏 ∈ 𝐵 : ∃𝑎 ∈ 𝐴 : 𝑎R𝑏. Then, im(R) = 𝐵 also holds.

If a relation is surjective, every target set element is reached by at least one element in the source

set. Consider the following two relations defined on the source set {1, 2, 3} and target set {𝑎, 𝑏, 𝑐}:

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✓ surjective

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✗ not surjective

The relation depicted on the right is not surjective, as there is no connection to 𝑏.

126

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Definition 4.52 (Left-Unique/Injective Relation).
Let R ⊆ 𝐴 × 𝐵 be a relation on arbitrary sets 𝐴 and 𝐵.

R is left-unique or injective if ∀𝑎1, 𝑎2 ∈ 𝐴 : ∀𝑏 ∈ 𝐵 : 𝑎1R𝑏 ∧ 𝑎2R𝑏 → 𝑎1 = 𝑎2.

If a relation is injective, each target set element is connected to at most one element in the source

set. Consider the following two relations defined on the source set {1, 2, 3} and target set {𝑎, 𝑏, 𝑐}:

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✓ injective

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✗ not injective

The relation depicted on the right is not injective, as there are two connections to 𝑏.

Definition 4.53 (Right-Unique/Functional Relation).
Let R ⊆ 𝐴 × 𝐵 be a relation on arbitrary sets 𝐴 and 𝐵.

R is right-unique or functional if ∀𝑏1, 𝑏2 ∈ 𝐵 : ∀𝑎 ∈ 𝐴 : 𝑎R𝑏1 ∧ 𝑎R𝑏2 → 𝑏1 = 𝑏2.

If a relation is functional, each source set element is connected to at most one element in the target

set. Consider the following two relations defined on the source set {1, 2, 3} and target set {𝑎, 𝑏, 𝑐}:

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✓ functional

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✗ not functional

The relation depicted on the right is not functional as there are two outgoing connections from 1.

Definition 4.54 (Total and Partial Functions). A functional relation 𝑓 ⊆ 𝐴 × 𝐵 on two arbitrary
sets 𝐴 and 𝐵 is called function from 𝐴 to 𝐵, abbreviated as 𝑓 : 𝐴 → 𝐵. If it is left-total, it is
called total function. Otherwise, it is called partial function. For functions, the source set is
commonly referred to as “domain” and the target set is called “codomain.”

Note that in the case of partial functions, the source set and domain (the way we defined it in
Definition 4.38) actually differ. Nonetheless, “domain” is often used the same way as for total
functions if the relation is not mentioned explicitly.

127

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

You probably already know functions from school where they were defined to map some parameter

values to some other values. Mathematically speaking, functions are a special kind of relations

that connect a parameter to a result value. Let’s consider the function 𝑓 : N→ N which is defined

as 𝑓 (𝑥) = 𝑥 + 1. If we think of 𝑓 as a relation, it is a set that contains infinitely many pairs (for

example (1, 2) ∈ 𝑓 and (41, 42) ∈ 𝑓). This relation is functional, as it maps each value for 𝑥 (the

parameter) to exactly one result value (that is 𝑥 + 1).

Definition 4.55 (Bijective Relation). A relation R is bijective if it is both surjective and injective.

If a relation is bijective, each target set element is reached by exactly one source set element.

Consider the following two relations defined on the source set {1, 2, 3} and target set {𝑎, 𝑏, 𝑐}:

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✓ bijective

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✗ not bijective

The relation depicted on the right is not bijective for two reasons: There is no source set element

connecting to 𝑎, and there are two source set elements connecting to 𝑏. Both reasons would

suffice on their own to disprove the right relation being bijective.

Definition 4.56 (Bijection). A bijective total function is called bijection. Bijections are left-total,
surjective, injective and functional.

Be careful not to confuse bijections with bijective relations. The latter ones aren’t necessarily
left-total or functional but only surjective and injective. Bijections connect each element of

the source set to exactly one element of the target set and vice-versa. Therefore, bijections are

sometimes also called one-to-one relations.

Consider the following two relations defined on the source set {1, 2, 3} and target set {𝑎, 𝑏, 𝑐}:

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✓ a bijection

1

2

3

𝑎

𝑏

𝑐

Source Set Target Set

✗ not a bijection

128

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

The relation depicted on the right is not a bijection for multiple reasons:

• It is not left-total, as 3 is not connected to any target set element.

• It is not surjective, as there is no source set element connected to 𝑐 .

• It is not injective, as there are two different source set elements connected to 𝑏.

• It is not functional, as 1 is connected to two different target set elements.

Any one of those four reasons would suffice on their own to disprove the relation being a bijection.

Let’s look at an example, where we prove some relation properties for a concrete relation.

< Example 4.57: Proving Relation Properties

Let 𝑓 ⊆ R×R be defined by {(𝑥, 𝑥2) | 𝑥 ∈ R}.
You can see a plot of 𝑓 on the right.

We prove: 𝑓 is left-total.

Proof. Let 𝑥 ∈ R be arbitrary, but fixed. We

need to find a 𝑦 ∈ R such that (𝑥,𝑦) ∈ 𝑓 . We

choose 𝑦 := 𝑥2, and are done since (𝑥, 𝑥2) ∈
𝑓 by definition. Thus, 𝑓 is left-total. □

We prove: 𝑓 is not surjective.
−4 −2 0 2 4

0

5

10

15

𝑓

𝑥

𝑦

Proof by contradiction. Assume 𝑓 is surjective. Then, in particular, there is 𝑥 such that

(𝑥,−1) ∈ 𝑓 , which means that 𝑥2 = −1. Because
√
−1 is not defined on the real number line,

there is no 𝑥 ∈ R so that 𝑥2 = −1. This is a contradiction. Therefore, 𝑓 is not surjective. □
Intuitively: One can easily see that 𝑓 is not surjective as the function plot never reaches

values below the 𝑥-axis.

We prove: 𝑓 is not injective.

Proof by contradiction. Assume 𝑓 is injective. Let 𝑥1 = 1 and 𝑥2 = −1. In particular, 𝑥1 ≠ 𝑥2
Then (𝑥1, 1) ∈ 𝑓 and (𝑥2, 1) ∈ 𝑓 . Since 𝑓 was assumed injective, we have 𝑥1 = 𝑥2, a

contradiction. Thus 𝑓 is not injective. □

Intuitively: One can easily see that 𝑓 is not injective as the function plot reaches some

values on the 𝑦-axis multiple times.

We prove: 𝑓 is functional.

Proof. Let 𝑥 ∈ R be arbitrary, but fixed. We must show that for any two numbers 𝑦1, 𝑦2
such that (𝑥,𝑦1) ∈ 𝑓 and (𝑥,𝑦2) ∈ 𝑓 , 𝑦1 = 𝑦2. By definition of 𝑓 , we know that𝑦1 = 𝑥

2 = 𝑦2.

Therefore, 𝑓 is functional. □

b Checkpoint 4.58: Bijections and Cardinality

Consider a bijection on two finite sets. Which property regarding the cardinality of the

source set and target set does always hold?

129

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

4.2.3 Properties of Relations on Universal Sets

Most relations computer scientists work with are defined on universal sets (meaning the source

and target set are equal). In this section, we introduce several properties of such relations that

allow us to further classify them. From now on, we no longer explicitly name relations defined

on a universal set 𝐴 as such; instead, we say “relations on 𝐴” and refer to relations defined on

different a source set 𝑋 and target set 𝑌 as “relation on 𝑋 and 𝑌 .”

Definition 4.59 (Reflexive Relation). Let R ⊆ 𝐴2 be a relation defined on some set 𝐴.

R is reflexive if ∀𝑥 ∈ 𝐴 : 𝑥R𝑥 holds.

If a relation is reflexive, each element of 𝐴 is connected to itself.

Definition 4.60 (Irreflexive Relation). Let R ⊆ 𝐴2 be a relation defined on some set 𝐴.

R is irreflexive if ∀𝑥 ∈ 𝐴 : (𝑥, 𝑥) ∉ R holds.

If a relation is irreflexive, no element of 𝐴 is connected to itself.

Consider the following three relations defined on {𝑎, 𝑏, 𝑐, 𝑑}:

𝑎

𝑏 𝑐

𝑑

✓ reflexive
✗ not irreflexive

𝑎

𝑏 𝑐

𝑑

✗ not reflexive
✗ not irreflexive

𝑎

𝑏 𝑐

𝑑

✗ not reflexive
✓ irreflexive

The relation depicted left is reflexive but not irreflexive as every element of 𝐴 is self-connected.

The relation in the middle is neither reflexive nor irreflexive, as only 𝑎 and 𝑑 but not 𝑐 and 𝑑 have

reflexive edges. As you can see, reflexivity is not the opposite of irreflexivity.

The relation shown on the right has no reflexive edges, therefore it is not reflexive but irreflexive.

Definition 4.61 (Transitive Relation). Let R ⊆ 𝐴2 be a relation defined on some set 𝐴.

R is transitive if ∀𝑥,𝑦, 𝑧 ∈ 𝐴 : 𝑥R𝑦 ∧ 𝑦R𝑧 → 𝑥R𝑧 holds.
A relation being transitive means that there is always a direct connection from 𝑥 to 𝑧 if a 𝑦 exists,
which 𝑥 is connected to and which connects to 𝑧.

Consider the following two relations defined on {𝑎, 𝑏, 𝑐, 𝑑}:

𝑎 𝑏 𝑐 𝑑

✓ transitive

𝑎 𝑏 𝑐 𝑑

✗ not transitive

The relation depicted on the right is not transitive, as 𝑏 is connected to 𝑐 and 𝑐 is connected to 𝑑 ,

but there is no direct connection from 𝑏 to 𝑑 . Intuitively, transitivity allows you to get directly

from one node to another if there is a path over another node to reach it.

130

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Definition 4.62 (Symmetric Relation). Let R ⊆ 𝐴2 be a relation defined on some set 𝐴.

R is symmetric if ∀𝑥,𝑦 ∈ 𝐴 : 𝑥R𝑦 → 𝑦R𝑥 holds.

If a relation is symmetric, for each connection from one node to another there also exists a connection
between the two nodes in the opposite direction.

Definition 4.63 (Antisymmetric Relation). Let R ⊆ 𝐴2 be a relation defined on some set 𝐴.

R is antisymmetric if ∀𝑥,𝑦 ∈ 𝐴 : 𝑥R𝑦 ∧ 𝑦R𝑥 → 𝑥 = 𝑦 holds.

If a relation is antisymmetric, for each connection from one node to another there is no connection
between the two nodes in the opposite direction.

Definition 4.64 (Asymmetric Relation). Let R ⊆ 𝐴2 be a relation defined on some set 𝐴.

R is asymmetric if ∀(𝑥,𝑦) ∈ R : (𝑦, 𝑥) ∉ R holds.

If a relation is asymmetric, for each connection from one node to another there is no connection
between the two nodes in the opposite direction. Additionally, there also are no reflexive edges.

Consider the following four relations defined on {𝑎, 𝑏, 𝑐, 𝑑}:

𝑎

𝑏 𝑐

𝑑

✓ symmetric
✗ not antisymmetric
✗ not asymmetric

𝑎

𝑏 𝑐

𝑑

✗ not symmetric
✗ not antisymmetric
✗ not asymmetric

𝑎

𝑏 𝑐

𝑑

✗ not symmetric
✓ antisymmetric
✗ not asymmetric

𝑎

𝑏 𝑐

𝑑

✗ symmetric
✓ antisymmetric
✓ asymmetric

The first relation is symmetric as for each edge there exists an edge going in the opposite direction.

The second relation is not symmetric, as there is an edge from 𝑎 to 𝑏 but none from 𝑏 to 𝑎. It also

isn’t antisymmetric or asymmetric as there are symmetric edges (𝑏, 𝑐) and (𝑐, 𝑏). As shown in

this example, symmetry, antisymmetry and asymmetry are not mutual opposites.

The third relation is antisymmetric but not asymmetric as there are no symmetric edges between

different nodes but reflexive nodes at 𝑎 and 𝑑 .

The fourth relation is both antisymmetric and asymmetric as no reflexive or symmetric edges

exist. Note that every asymmetric relation is also antisymmetric.

Definition 4.65 (Connected Relation). Let R ⊆ 𝐴2 be a relation defined on some set 𝐴.

R is connected or total if ∀𝑥,𝑦 ∈ 𝐴 : 𝑥 ≠ 𝑦 → 𝑥R𝑦 ∨ 𝑦R𝑥 holds.

R is strongly connected if ∀𝑥,𝑦 ∈ 𝐴 : 𝑥R𝑦 ∨ 𝑦R𝑥 holds.

In a connected relation, each element of 𝐴 is connected with each other element of 𝐴 in at least one
direction. If a relation is strongly connected, each element of 𝐴 is additionally connected to itself.
Therefore, strongly connected relations are always reflexive.

131

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

< Example 4.66: Properties of =, ≠, < and ≤ Relations

In this example, we take a look at the =, ≠, < and ≤ relations on N.

= reflexive, as 𝑥 = 𝑥 holds for every 𝑥 ∈ N
transitive, as from 𝑥 = 𝑦 and 𝑦 = 𝑧 it follows that 𝑥 = 𝑧

symmetric, as from 𝑥 = 𝑦 we can follow 𝑦 = 𝑥

not connected, as neither 1 = 2 nor 2 = 1 hold

≠ irreflexive, as 𝑥 ≠ 𝑥 holds for no 𝑥 ∈ N
not transitive, as from 𝑥 ≠ 𝑦 and 𝑦 ≠ 𝑧 does not imply 𝑥 ≠ 𝑧 (𝑥 = 𝑧 is possible)

symmetric, as from 𝑥 ≠ 𝑦 we can follow 𝑦 ≠ 𝑥

connected, as for any distinct 𝑥 and 𝑦 it holds that 𝑥 ≠ 𝑦

not strongly connected, as 𝑥 = 𝑥 and 𝑥 ≠ 𝑥 can never be true at the same time

< irreflexive, as 𝑥 < 𝑥 holds for no 𝑥 ∈ N
transitive, as 𝑥 < 𝑦 and 𝑦 < 𝑧 implies 𝑥 < 𝑧

asymmetric, as 𝑥 < 𝑦 and 𝑦 < 𝑥 can never be true at the same time

connected, as 𝑥 ≠ 𝑦 implies 𝑥 < 𝑦 or 𝑦 < 𝑥

not strongly connected, as 𝑥 = 𝑥 and 𝑥 < 𝑥 can never be true at the same time

≤ reflexive, as 𝑥 ≤ 𝑥 holds for every 𝑥 ∈ N
transitive, as 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧
antisymmetric, as 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 can only be true at the same time if 𝑥 = 𝑦

connected, as 𝑥 ≠ 𝑦 implies 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥
strongly connected, as 𝑥 = 𝑥 implies 𝑥 ≤ 𝑥

b Checkpoint 4.67: All Satisfied

There is a relation which fulfills all the properties introduced in this section. Which one is

it? For all other relations, which properties can never occur at the same time?

Definition 4.68 (Relation Closures). Let R ⊆ 𝐴2 be a relation defined on some set 𝐴.

The reflexive closure of R is the smallest reflexive relation R′ for which R ⊆ R′ holds. The
symmetric and transitive closures are defined analogously.

The closure R′ of a relation R regarding one or more properties is the smallest superset of R which
contains all necessary connections to fulfill the considered properties.

Consider the following relations defined on {𝑎, 𝑏, 𝑐, 𝑑}:

𝑎

𝑏 𝑐

𝑑

✗ not reflexive
✗ not symmetric

𝑎

𝑏 𝑐

𝑑

✓ reflexive
✓ symmetric

The relation on the right is the reflexive-symmetric closure of the left relation. This means that we

have added the least amount of edges to make the left relation become reflexive and symmetric.

132

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Definition 4.69 (Composition). Let𝐴, 𝐵,𝐶 be sets, and R1 ⊆ 𝐵×𝐶 and R2 ⊆ 𝐴×𝐵 two relations.

The composition R1 ◦ R2 of two relations R1 and R2 is defined as follows:

R1 ◦ R2 B {(𝑎, 𝑐) ∈ 𝐴 ×𝐶 | ∃𝑏 ∈ 𝐵 : 𝑎R2𝑏 ∧ 𝑏R1𝑐}

The composition of two functions 𝑓 : 𝐵 → 𝐶 and 𝑔 : 𝐴→ 𝐵 is usually written as follows:

(𝑓 ◦ 𝑔) (𝑥) B 𝑓 (𝑔(𝑥))

Be careful when using compositions: They are not always defined in the same way. In some

contexts, the order in which the functions or relations are written is swapped.

< Example 4.70: Relation Composition

Let 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝐵 = {1, 2, 3, 4} and 𝐶 = {𝛼, 𝛽,𝛾, 𝛿} be sets. Additionally, let
R1 = {(1, 𝛼), (2, 𝛾), (3, 𝛽), (4, 𝛿)} ⊆ 𝐵 ×𝐶 and R2 = {(𝑎, 2), (𝑏, 1), (𝑐, 4), (𝑑, 3)} ⊆ 𝐴 × 𝐵 be

relations on those sets. We visualize R1 and R2 in the following arrow diagram:

𝑎

𝑏

𝑐

𝑑

1

2

3

4

𝛼

𝛽

𝛾

𝛿

𝐴 𝐵 𝐶R2 R1

Intuitively, we can get the composition R1 ◦ R2 by tracing the outgoing arrows from each

element in 𝐴 to see which elements in𝐶 can be reached. For example, from 𝑎 we can reach

𝛾 by going over 2. By tracing all arrows that start at some element of 𝐴, we can see that

the composition is R1 ◦ R2 = {(𝑎,𝛾), (𝑏, 𝛼), (𝑐, 𝛿), (𝑑, 𝛽)}.

Definition 4.71 (Alternative Definitions of Relation Properties). Let R ⊆ 𝐴2 be a relation
defined on some set 𝐴.

• R is reflexive iff Id𝐴 ⊆ R.

• R is irreflexive iff R ∩ Id𝐴 = ∅.

• R is transitive iff R ◦ R ⊆ R.

• R is symmetric iff R−1 ⊆ R.

• R is antisymmetric iff R ∩ R−1 ⊆ Id𝐴.

• R is asymmetric iff R ∩ R−1 = ∅.

b Checkpoint 4.72: Alternative Definitions

Take a moment to think about each of the alternative definitions seen in Definition 4.71.

Why are these equivalent to the definitions we introduced before?

133

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

4.2.4 Equivalence and Order Relations

Over the last sections, we introduced the concept of relations as well as several properties that

allow us to classify them. In this section, we use these properties to construct so-called equivalence

relations.

Definition 4.73 (Equivalence Relation). A binary relation R on some set𝐴 is called equivalence
relation if it is reflexive, symmetric and transitive. Two elements 𝑥 and 𝑦 are R-equivalent if 𝑥R𝑦.
The set [𝑎] B {𝑥 ∈ 𝐴 | 𝑎R𝑥} is called an equivalence class with representative 𝑎.

� In Other Words: Equivalence Relations

Equivalence relations allow us to split up a set of objects into different classes by certain

shared properties. As the name suggests, this kind of relation groups equivalent objects

and separates them from other groups. Those groups are called equivalence classes. Within

those groups, all elements are related to all elements (including themselves).

The reflexive property of the relation ensures that each element is equivalent to itself.

Additionally, the relation is symmetric to ensure that if an element 𝑥 is equivalent to

another element 𝑦, then 𝑦 is also equivalent to 𝑥 . The transitive property ensures that if

an element 𝑥 is equivalent to an element 𝑦 and 𝑦 is equivalent to an element 𝑧, that 𝑥 is

also equivalent to 𝑧.

You probably already worked with multiple equivalence relations without even noticing. The

best-known equivalence relation is =, which can be used to relate numbers of the same value. For

example, we can relate 0.5, 1
2
,
2

4
and

3

6
as they are all equivalent regarding the = relation. Because

0.5 = 1

2
= 2

4
= 3

6
holds, we can follow that all the listed numbers are part of the same equivalence

class

[
1

2

]
.

Other examples of equivalence relations include the logical equivalence ≡ on the set of logical

expressions, and the relation “Person 𝑥 was born in the same year as person 𝑦.” on a set of persons.

If we stick to equivalence relations on the set of natural numbers, the remainder of a division by

some number𝑚 might come to mind. This equivalence is called “modular congruence.”

Definition 4.74 (Modular Congruence). Let 𝑎, 𝑏 and 𝑛 > 1 be integer values.
𝑎 and 𝑏 are congruent modulo 𝑛 if the remainder of integer division by 𝑛 is equal for 𝑎 and 𝑏.
Then, 𝑛 is called the modulus and the congruence is written as 𝑎 ≡ 𝑏 (mod 𝑛). The resulting
equivalence classes are called residue classes.

< Example 4.75: Modular Congruence

Let’s consider the modulus 3. It splits the natural numbers up into three residue classes:

One for numbers that are divisible by 3, one for those numbers that can be divided

with remainder 1, and one for numbers with division remainder 2. The most obvious

representatives for those classes are 0, 1 and 2. Still, each of the residue classes can be

represented by any number that is contained in it. Therefore, we can name the class for

numbers that are divisible by 3 [0], [3], [6], [42],

134

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Now that we know of a way to express the equivalence or equality of mathematical objects using

relation, let’s think of a way to express comparisons between different objects. This allows us to

say that a mathematical object is “greater than” or “less than” another object. “Greater” or “less”

can, depending on the context, have other meanings than expected: Take for example the relation

“𝑥 is geographically contained within 𝑦” on the following set of regions:

𝐿 = {World,Africa,Asia, Europe,America, Brazil,China, France, Japan,Kenya}

We can visualize this relation in a graph:

World

Africa Asia Europe America

Kenya China Japan France Brazil

Notice that the transitive and reflexive edges are missing in this graph even though every country

lies within the world and every region is also geographically contained in itself. We left them out

as those would make reading the graph significantly harder.

By our definition, the relation is antisymmetric, reflexive and transitive. Those properties can be

used to order all regions: For example, we can say that France is contained in Europe but not the

other way around. Therefore, we could say that Europe is greater than France in terms of this

specific relation.

Definition 4.76 (Order Relation).
If a relation R ⊆ 𝐴2 is antisymmetric, transitive and reflexive, it is called an order relation on 𝐴.

If R is irreflexive instead of reflexive, it is called a strict order relation on 𝐴.

Two more commonly known order relations are ≤ and < on N. The latter is a strict order relation,

as it is irreflexive because no number is less than itself.

Definition 4.77 (Partial and Linear Order). An order relation that is connected is called linear
order or total order while a non-connected order relation is called partial order. If a linear order
is irreflexive instead of reflexive, it is also called strict linear order or strict total order.

In contrast to our relation on geographic regions, the ≤ and < onN relations are also connected as

every number is related to all other numbers in one direction. This allows us to order all numbers

in one line as can be seen below:

0 1 2 3 · · ·

Figure 4.78: ≤ relation on N

135

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

You might notice that there is no edge pointing to 0 except for the reflexive one. Instead, 0 has

outgoing edges to every other element in N. Intuitively, we say 0 is the smallest element or

minimum of N as it is smaller than every other element of N.

Definition 4.79 (Minimum and Minimal Element).
Let R ⊆ 𝐴2 be an order on 𝐴 and 𝐴′ ⊆ 𝐴 a non-empty subset of 𝐴.

An element 𝑦 ∈ 𝐴′ is called minimal element in 𝐴′ if ∀𝑥 ∈ 𝐴′ : 𝑥R𝑦 → 𝑥 = 𝑦.

An element 𝑥 ∈ 𝐴′ is called minimum of 𝐴′ if ∀𝑦 ∈ 𝐴′ : 𝑥R𝑦.

� In Other Words: Minimal Elements and Minima

Let R ⊆ 𝐴2
be an order on 𝐴.

You can think ofminimal elements as all elements of𝐴 that have no incoming edges except

for reflexive ones. Minima (singular: minimum) are a special kind of minimal elements

and have the additional property that they have outgoing edges to all other elements.

Minima can only exist on linear orders which by their linear nature never have more than

one minimal element. If there exist multiple minimal elements, none of them can be a

minimum because that minimum would then have to have outgoing edges to the other

minimal elements (which lets them lose their minimal property).

Recall the relation on geographic regions we introduced in this section. We can find multiple

minimal elements (the countries) which have no incoming edges except for reflexive ones. Still,

there is no minimum as none of the minimal elements is related to all other regions (e.g. China

and Japan are not related at all).

b Checkpoint 4.80: Max

How would you define a maximum and maximal elements for order relations?

To finish up this section on order relations, let’s consider the ≤ relation on Z. It does not have a

minimum as it is not limited by any smallest number: For every integer, you can find another

even smaller integer.

· · · −1 0 1 · · ·

Figure 4.81: ≤ relation on Z

Definition 4.82 (Well-Founded and Well-Ordered Sets). Let R ⊆ 𝐴2 be an order on 𝐴.

R iswell-founded if for any non-empty subset of𝐴 there exists a minimal element. A well-founded
total order is also called well-order.

Intuitively, an order relation is well-founded if there is no infinitely descending chain. If you think

of the graph of a well-founded relation, you can start at any node and walk over every incoming

edge back until you at some point hit a minimal element. This also means that any incoming path

leading to some element in a well-founded relation only consists of a finite number of edges.

136

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

4.2.5 Cardinality of Infinite Sets

In the chapter on sets, we already defined the cardinality of finite sets to be the number of elements

contained within them. Next up, we discuss the cardinality of infinite sets. Take the set of natural

numbers N for example. Obviously, N consists of infinitely many elements, therefore one might

assume |N| = ∞. The same seems to hold for the set of real numbers R: |R| = ∞. Don’t let this
fool you into believing that these equations actually hold

3
or that N and R are equal in size. In

this section, we see why both sets have different sizes even though both contain infinitely many

elements. To prove this, we first have to define what it means for two infinite sets to be “equal in

size”—or, more formally, “equinumerous.”

Definition 4.83 (Equinumerous Sets).
Two sets 𝐴 and 𝐵 are equinumerous iff a bijection 𝑓 : 𝐴→ 𝐵 exists.

� In Other Words: Bijections and Cardinality

Recall the definition of bijections: A bijection is a relation which connects each element

of its source set to exactly one element of its target set and vice-versa. We can say that

two sets 𝐴 and 𝐵 are equal in size if we can find such a one-to-one relation that maps each

element of 𝐴 to exactly one element of 𝐵 and the other way around.

This works both for finite and infinite sets. If𝐴 and 𝐵 are finite, finding a bijection is trivial

as we can just define orders on both sets and then construct a relation which maps the

first element of 𝐴 to the first element of 𝐵, the second element of 𝐴 to the second element

of 𝐵, and so on for every pair of elements.

We can use this definition to show that the set of natural numbers N and the set of integers Z are

equal in size. To do so, we have to find a bijection 𝑓 : N→ Z mapping each integer uniquely to

one natural number.

Theorem 4.84. N and Z are equinumerous, meaning a bijection 𝑓 : N→ Z exists.

Proof. Let 𝑓 : N→ Z be defined as follows:

𝑓 (𝑥) =
{
𝑥
2
, if 𝑥 is even

−𝑥+1
2
, if 𝑥 is odd

𝑓 then yields the following results:

𝑥 0 1 2 3 4 5 6 · · ·
𝑓 (𝑥) 0 −1 1 −2 2 −3 3 · · ·

We can also represent the results of 𝑓 as a spiral:

· · · −3 −2 −1 0 1 2 3 · · ·

Figure 4.85: Graphical representation of results of 𝑓

3
There is no clear definition on what∞ is supposed to mean. Therefore, the equation∞ = ∞ doesn’t make sense.

137

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

We show that N and Z are equinumerous by proving that 𝑓 is a bijection on N and Z. This can be

done by proving 𝑓 is left-total, surjective, injective and functional.

We show: 𝑓 is left-total, so ∀𝑎 ∈ N : ∃𝑏 ∈ Z : 𝑓 (𝑎) = 𝑏.
Let 𝑎 ∈ N be arbitrary, but fixed. We differentiate between two cases:

• Case 1: 𝑎 is even.
Then ∃𝑘 ∈ N : 𝑎 = 2𝑘 and 𝑓 (𝑎) = 𝑎

2
= 2𝑘

2
= 𝑘 . Therefore, 𝑓 (𝑎) ∈ Z.

• Case 2: 𝑎 is odd.
Then ∃𝑘 ∈ N : 𝑎 = 2𝑘 + 1 and 𝑓 (𝑎) = −𝑎−1

2
= − 2𝑘+1−1

2
= −𝑘 . Therefore, 𝑓 (𝑎) ∈ Z.

We show: 𝑓 is surjective, so ∀𝑏 ∈ Z : ∃𝑎 ∈ N : 𝑓 (𝑎) = 𝑏.
Let 𝑏 ∈ Z be arbitrary, but fixed. We differentiate between two cases:

• Case 1: 𝑏 ≥ 0.
Let 𝑎 = 2𝑏. Then 𝑎 is even and 𝑓 (𝑎) = 𝑎

2
= 2𝑏

2
= 𝑏.

• Case 2: 𝑏 < 0.
Let 𝑎 = −2𝑏 − 1. Then 𝑎 is odd and 𝑓 (𝑎) = −𝑎+1

2
= −−2𝑏−1+1

2
= 𝑏.

We show: 𝑓 is injective, so ∀𝑏 ∈ Z : ∀𝑎1, 𝑎2 ∈ N : 𝑓 (𝑎1) = 𝑏 ∧ 𝑓 (𝑎2) = 𝑏 → 𝑎1 = 𝑎2.

Let 𝑏 ∈ Z and 𝑎1, 𝑎2 ∈ N be arbitrary, but fixed with 𝑓 (𝑎1) = 𝑏 and 𝑓 (𝑎2) = 𝑏. We differentiate

between four cases:

• Case 1: 𝑎1 and 𝑎2 are even.
Then 𝑓 (𝑎1) = 𝑎1

2
= 𝑏 =

𝑎2
2
= 𝑓 (𝑎2) and by multiplying 2: 𝑎1 = 𝑎2.

• Case 2: 𝑎1 and 𝑎2 are odd.
Then 𝑓 (𝑎1) = −𝑎1+1

2
= 𝑏 = −𝑎2+1

2
= 𝑓 (𝑎2) and by multiplying 2 and subtracting 1: 𝑎1 = 𝑎2.

• Case 3: 𝑎1 is even and 𝑎2 is odd.
Then 𝑓 (𝑎1) = 𝑎1

2
= 𝑏 = −𝑎2+1

2
= 𝑓 (𝑎2) and by multiplying 2 and adding 1: 𝑎1 + 1 = −𝑎2. As

𝑎1 ∈ N, 𝑎1 + 1 > 0 has to hold and therefore 𝑎2 < 0 and 𝑎2 ∉ N . Hence, this cannot occur.

• Case 4: 𝑎1 is odd and 𝑎2 is even.
Analogous to the previous case, this cannot occur.

We show: 𝑓 is functional, so ∀𝑎 ∈ N : ∀𝑏1, 𝑏2 ∈ Z : 𝑓 (𝑎) = 𝑏1 ∧ 𝑓 (𝑎) = 𝑏2 → 𝑏1 = 𝑏2.

Let 𝑎 ∈ N and 𝑏1, 𝑏2 ∈ Z be arbitrary, but fixed with 𝑓 (𝑎) = 𝑏1 and 𝑓 (𝑎) = 𝑏2. We differentiate

between two cases:

• Case 1: 𝑎 is even.
Then 𝑏1 = 𝑓 (𝑎) = 𝑎

2
= 𝑓 (𝑎) = 𝑏2.

• Case 2: 𝑎 is odd.
Then 𝑏1 = 𝑓 (𝑎) = −𝑎−1

2
= 𝑓 (𝑎) = 𝑏2.

By proving all bijection properties of 𝑓 we have shown that N and Z are equinumerous. □

138

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Now that we have shown that N and Z are equinumerous, the question arises if there are other

infinite sets that are also equinumerous to N. The answer to this question is yes, as, for example,

the set of even and the set of uneven numbers are both also equinumerous to N.

Definition 4.86 (Countable Set). A set is countable if it is finite or equinumerous to N. If a
countable set is infinite, it is also called countably infinite set. An infinite set that is not countable
is called uncountably infinite set.

Intuitively, each infinite set for which it is possible to uniquely assign a natural number to every

element is countable. In contrast to these countable sets, there also are uncountably infinite sets

for which this is not possible. A prominent example for such uncountable sets is the set of real

numbers R.

Ç Going Beyond: Cantor’s Diagonal Argument

We can prove that R is uncountable by using Cantor’s diagonal argument. For this, we

only consider real numbers in the interval (0, 1) (those that are > 0 and < 1). Showing that

the set of these numbers already is uncountable is enough to prove that R is uncountable.

Cantor’s diagonal argument proves that no bijection 𝑓 : N→ (0, 1) can exist. Assume any

function 𝑓 : N→ (0, 1). We can write its results in a list like this:

𝑓 (1) = 0. 𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4 𝑎1,5 · · ·
𝑓 (2) = 0. 𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4 𝑎2,5 · · ·
𝑓 (3) = 0. 𝑎3,1 𝑎3,2 𝑎3,3 𝑎3,4 𝑎3,5 · · ·
𝑓 (4) = 0. 𝑎4,1 𝑎4,2 𝑎4,3 𝑎4,4 𝑎4,5 · · ·
𝑓 (5) = 0. 𝑎5,1 𝑎5,2 𝑎5,3 𝑎5,4 𝑎5,5 · · ·
...

...
...

...
...

...
...

. . .

Here, 𝑎𝑚,𝑛 represents the digit at the 𝑛-th decimal place of 𝑓 (𝑚). If we take all digits along
the main diagonal (underlined in the visualization) and change them to some other digit

(for example by adding 1 and overflowing to 0 from 9 + 1), we can construct a new number

which is contained in (0, 1) but is never reached by 𝑓 because each for each number reached

by 𝑓 , one digit was changed to no longer match it. Therefore, 𝑓 cannot be surjective. This

leads to the conclusion that the set of real numbers is uncountable.

139

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Before ending this chapter, we still have one proof left:

Theorem 4.87 (Cantor). The cardinality of an arbitrary set 𝐴 differs from the one of its power set
P(𝐴), that is

|𝐴| ≠ |P(𝐴) |.

Proof by contradiction. Let 𝐴 be an arbitrary set. We assume that the cardinality of 𝐴 is equal to

the one of P(𝐴). Therefore, a bijection 𝑓 : 𝐴→ P(𝐴) exists.
We defineS B {𝑥 ∈ 𝐴 | 𝑥 ∉ 𝑓 (𝑥)}. AsS only consists of elements of𝐴, bothS ⊆ 𝐴 and therefore

also S ∈ P(𝐴) hold.
Since 𝑓 is surjective and S ∈ P(𝐴), an 𝑎 ∈ 𝐴 has to exist so that 𝑓 (𝑎) = S.
We differentiate two cases:

• Case 1: 𝑎 ∈ 𝑓 (𝑎). Then by definition 𝑎 ∉ S = 𝑓 (𝑎) .

• Case 2: 𝑎 ∉ 𝑓 (𝑎). Then by definition 𝑎 ∈ S = 𝑓 (𝑎) .

Since both cases lead to a contradiction, our assumption has to be wrong. Therefore, a bijection

𝑓 : 𝐴→ P(𝐴) cannot exist, so 𝐴 and P(𝐴) are not equinumerous. □

� In Other Words: Cantor’s Proof

The proof you have just seen is pretty abstract, so there is no need to worry if you did not

understand it the first time you read it. It works by showing that no bijection 𝑓 between

any set 𝐴 and its power set P(𝐴) can exist.

To show this, we define a setS that contains all elements of𝐴 that do not appear in the result

of 𝑓 when applied to that specific element. Consider for example the set 𝐴 = {1, 2, 3, 4}
and assume the following mappings for 𝑓 : 𝑓 (1) = {1, 2} and 𝑓 (2) = {3}. In this specific

example, 1 does not appear in S because it is contained in 𝑓 (1) = {1, 2}, but 2 does appear
in S as it is not contained in 𝑓 (2) = {3}.
We then use the fact that every bijection is surjective, meaning that there has to exist an

input 𝑎 ∈ 𝐴 for 𝑓 such that it returns S. This leads to a contradiction: If 𝑎 is contained in

𝑓 (𝑎), then by definition of S, 𝑎 ∉ S and if 𝑎 is not contained in 𝑓 (𝑎), then 𝑎 ∈ S. Thus, no
𝑎 can exists for which 𝑓 (𝑎) = S.
This proves that our initial assumption that a bijection between 𝐴 and P(𝐴) exists is
wrong. Therefore, 𝐴 and P(𝐴) have to have different cardinalities.

140

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

4.3 Problems With Naive Set Theory

To conclude this chapter, we would like to take a look at some problems posed by the very first

definition we gave for sets. As previously stated, we use Cantor’s naive definition of a set which,

if you remember Definition 4.1, was only loosely defined as a collection of some distinct objects.

We also saw quite early that those objects can also be sets themselves, but we did not think further

about this. However, this fact poses some interesting problems with important consequences

which we want to investigate now along with some short insights into the history of set theory.

In the 19th century, sets were first used by the German mathematicians Gottlob Frege and

Richard Dedekind in a similar manner to what we have seen with Cantor, but not “formalized”.

Cantor published his definition in 1895 in his works “Beiträge zur Begründung der transfiniten

Mengenlehre” (contributions to the founding of the theory of transfinite numbers).

In 1901, British philosopher and mathematician Bertrand Russel discovered a severe problem

which later became known as Russel’s paradox or Russel’s antinomy. He asked the following

question:

Is there a set

that contains all sets

that do not contain themselves?

We can also formulate this question as a statement in our language of propositional logic:

∃𝐴 : 𝐴 = {𝐵 | 𝐵 ∉ 𝐵}?

You might ask yourself now: why should this be a paradox? Why should this set not exist? Until

now, we just wrote down any sets with any predicates and it just worked out fine. But here, things

are different.

We have to differentiate between two cases here, namely whether 𝐴 does contain itself. Let’s look

at them both and see where exactly the problem lies.

• First, let’s assume that, in fact, 𝐴 contains itself or formally 𝐴 ∈ 𝐴.
What are the consequences? If𝐴 ∈ 𝐴, we can follow𝐴 ∉ 𝐴 , since that is the very definition
of 𝐴, that is, the predicate all elements of 𝐴 fulfill. But this right there is a contradiction as

from Definition 4.2 we know that either 𝐴 ∈ 𝐴 or 𝐴 ∉ 𝐴.

So we can conclude that, if 𝐴 ∈ 𝐴, 𝐴 cannot exist.

• Now we take a look at the alternative, namely 𝐴 does not contain itself, for short 𝐴 ∉ 𝐴.

Our conclusion goes similarly to the above case: if𝐴 does not contain itself, it is by definition

an element of 𝐴, meaning 𝐴 ∈ 𝐴 .

Again, because of the contradiction, the set 𝐴 cannot exist if 𝐴 ∉ 𝐴.

As either 𝐴 ∈ 𝐴 or 𝐴 ∉ 𝐴 and in both cases we come to a contradiction, the set 𝐴 cannot exist.

To reiterate, if it would exist, we were able to derive 𝐴 ∈ 𝐴↔ 𝐴 ∉ 𝐴 with the above reasoning

which is a false statement. Therefore, we have found a concrete set that we can write down but

that cannot exist. That is the core of the paradox.

141

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

Ç Going Beyond: Cantor’s Antinomies

Cantor himself has also found twomore paradoxes (or antinomies) in his set theory and they

are therefore called Cantor’s first and second antinomies. The first one involves cardinal

numbers, a mathematical concept beyond what we are going to cover here. However, the

result is quite similar, as he found that the set containing all cardinal numbers is, in fact,

not a set.

Cantor’s second antinomy concerns the set that contains everything, particularly all sets.

We can write this out as

𝑈 B {𝑋 | ⊤} .

But why can’t this be a set? This is hard to prove without the necessary prerequisites.

However, we would still like to give you an intuition and therefore line out a proof concept.

We need one important result that is named after Cantor: Cantor’s theorem. Fortunately,

we have already seen something that is almost the theorem we need, namely Theorem 4.87.

The statement can actually be strengthened to

|𝐴| < |P(𝐴) |.

Now, if there were said set 𝑈 , then P(𝑈) ∈ 𝑈 , as 𝑈 contains all sets. Additionally, and for

the same reason, 𝑈 contains all 𝑃 ∈ P(𝑈). So we come to the conclusion that𝑈 contains

all elements of P(𝑈) plus P(𝑈) itself, meaning

|𝑈 | ≥ |P(𝑈) |.

This is a contradiction to Cantor’s theorem, which is why our assumption, that the set of

all sets𝑈 exists, is false.

The core construct that enabled the previous paradox was unrestricted quantification, which
describes the concept of just taking any property (like 𝑥 ∉ 𝑥) and constructing the set of all

objects fulfilling this property. Russel’s paradox showed that this construction principle leads to a

contradiction.

After these paradoxes were discovered, mathematicians began to come up with axiomatized set

theories, meaning that they gave a few axioms for how sets must behave, and then built their

set theories on top of them. There are a few different theories around today. One of them is

the Zermelo–Fraenkel set theory (ZF for short), named after mathematicians Ernst Zermelo and

Abraham Fraenkel. This set theory has several different construction principles, which allow

us to do almost all of the operations we want to do, like constructing power sets or unions, or

constructing a new set by removing some elements from an already existing set. Since there is no

unrestricted quantification in this set theory, the set of all sets that do not contain themselves

can not be constructed. Even further, every set is required to be well-founded, so that no set can

contain itself.

The way ZF deals with “sets” like discovered by Russel and Cantor is by creating another construct

called classes which simply are collections of sets. If a class itself is not a set, like the ones discussed

previously, it is called a proper class. Thus, there is no paradox, since the class of all sets that do

not contain themselves is not a set, and thus we can not even ask whether it contains itself, since

sets can not contain classes. However, the notion of classes is again only loosely defined, whereas,

for example, in the von-Neumann–Bernays–Gödel set theory (NBG for short) they are properly

142

Introduction to Mathematics in Computer Science Chapter 4: Sets and Relations

axiomatized.

What can we learn from all this? If you think back to the very beginning of chapter 4, we

introduced sets with a simple metaphor, namely a box into which you can put anything you like.

From that we formalized sets and came up with all sorts of things to do with them. Was all this

for nothing if the foundation we used is able to produce such paradoxes?

In the real world, mathematicians and computer scientists actually don’t care too much about this;

naive set theory is still fine to use as long as you do not construct weird sets that contain every

object of a certain property. Especially for our purposes, the set theory taught in this chapter

is sufficient to tackle most problems during your course of studies. And you will need it: set

theory is one of the foundation of mathematics and therefore leaks into almost every subject.

Even in computer science, it shows up whenever want to formally study a concept, like the theory

of computability, or in database theory, or really anywhere, as soon as we want to describe all

objects having a certain property.

143

This page is intentionally left blank.

5
�� Inductive Proofs

Proving that a proposition holds for a (small) finite number of elements is rather easy. Consider

the set S B {♥, ♦, ♣, ♠} and the following function 𝑓 : S → N:

𝑓 (♥) B 256 𝑓 (♦) B 42 𝑓 (♣) B 128 𝑓 (♠) B 1337

If we want to prove that ∀𝑠 ∈ S : 𝑓 (𝑠) ≥ 42, we can simply evaluate the 𝑓 for every suit and check

whether the resulting number is at least 42. Proving such propositions becomes much harder

if we have to deal with infinitely many elements. Consider the recursively defined Fibonacci
function fib : N→ N:

fib(0) B 0

fib(1) B 1

fib(𝑛 + 2) B fib(𝑛) + fib(𝑛 + 1)

How fast does this function grow? Let’s check:

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12

1.5𝑛 1 1.5 2.25 3.38 5.06 7.59 11.39 17.09 25.63 38.44 57.67 86.50 129.75

fib(𝑛) 0 1 1 2 3 5 8 13 21 34 55 89 144

2
𝑛

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

It seems obvious that 2
𝑛
grows faster than fib(𝑛). After all, 2𝑛 is a chain of multiplications 2×2× . . .

while fib(𝑛) is a chain of additions, so we’d expect this result, right? But wait, 1.5𝑛 is a chain

of multiplications as well and 1.511 is definitely less than fib(11). So our intuition is wrong.
1
It

seems like ∀𝑛 ∈ N≥11 : fib(𝑛) > 1.5𝑛 and ∀𝑛 ∈ N : fib(𝑛) < 2
𝑛
. But how can we actually be sure

about this? Is there a way to formally prove it?

� Chapter Goals

In this chapter, we discuss a proof technique called induction, which enables us to prove

propositions about infinite sets. We will discover different variants of induction and see

their use cases.

� In Other Words: The Essence of Induction

Writing inductive proofs might seem a bit complicated at first and it definitely requires

some training. But the idea behind induction can be briefly summarized. Just imagine that

the following two conditions hold:

• There is a person, Giuseppe, who knows induction.

• Every person that knows induction teaches induction to another person who does not

know induction yet.

Then finally, everybody knows induction!
a

a
Actually, infinitely many people do!

1fib does not build a chain but an entire tree of additions with significantly more operations than in 2
𝑛
.

145

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

5.1 Natural Induction

Before we prove the two propositions about fib from the introduction, we start with a simpler

example. You might have heard about the Gaussian sum: the sum of all natural numbers up to 𝑛

is just
𝑛 (𝑛+1)

2
, i.e.

∀𝑛 ∈ N : 0 + 1 + . . . + (𝑛 − 1) + 𝑛 =
𝑛(𝑛 + 1)

2

.

If we naively tried to prove this, we would probably start like this:

• For 𝑛 = 0 we have 0 =
0×(0+1)

2
.

• For 𝑛 = 1 we have 0 + 1 = 1 = 2

2
=

1×(1+1)
2

.

• For 𝑛 = 2 we have 0+ 1+ 2 = . . . To shortcut this here, we might reuse the result from 𝑛 = 1,

so we have 0 + 1 + 2 = 1×(1+1)
2
+ 2 = (1+2)×2

2
=

2×(2+1)
2

.

• For 𝑛 = 3 we have 0 + 1 + 2 + 3 =
2(2+1)

2
+ 3 =

(2+2)×3
2

=
3×(3+1)

2
, reusing the result from

𝑛 = 2.

• For 𝑛 = 4 we have 0 + 1 + 2 + 3 + 4 = 3(3+1)
2
+ 4 = (3+2)×4

2
=

4×(4+1)
2

, reusing the result from

𝑛 = 3.

• . . .

You might observe that the latter cases all follow the same pattern: For any 𝑘 ∈ N, we have
0 + · · · + 𝑘 + (𝑘 + 1) (∗)= 𝑘 (𝑘+1)

2
+ (𝑘 + 1) = (𝑘+2) (𝑘+1)

2
=
(𝑘+1) (𝑘+2)

2
. For (∗), we assume that

0+ · · · +𝑘 =
𝑘 (𝑘+1)

2
holds. But this assumption—let’s call it 𝑃 (𝑘) for short—is really fair: we already

showed 𝑃 (0) at the very top. Now with our general rule, we may show 𝑃 (1) given 𝑃 (0), so we
have both 𝑃 (1) and 𝑃 (0). And given 𝑃 (1), we may show 𝑃 (2). We may repeat this process ad

infinitum, and this way we show that ∀𝑛 ∈ N : 0 + . . . + 𝑛 =
𝑛 (𝑛+1)

2
.

The reasoning principle we used here is called natural induction. As a proof rule, it looks like
this:

∀𝑛 ∈ N : 𝑃 (𝑛) NatInd

𝑃 (0) 𝑘 ∈ N
IH : 𝑃 (𝑘) 𝑃 (𝑘 + 1)

To show that a proposition 𝑃 (𝑛) holds for all natural numbers 𝑛 ∈ N, it suffices to show that (1)

𝑃 (0) holds, and (2) that given 𝑃 (𝑘) for some 𝑘 ∈ N, 𝑃 (𝑘 + 1) holds. To simplify speaking about

these two cases, we call (1) the base case and (2) the induction case. Furthermore, we call the

assumption 𝑃 (𝑘) in the induction case induction hypothesis and usually name it “IH” in proof

tables, although it is not really different from other assumptions.

b Checkpoint 5.1: Different Starting Points

Is it possible to show a proposition for all natural numbers ≥ 42 using the proof rule above?

What about the even integers ≥ −7?

146

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Now, let us rewrite our proof more formally. First, we want to get rid of the · · · notation. While

the notation is pretty intuitive, it is rather hard to define what it means. A much better approach

is to use the

∑
notation (

∑
is the capital Greek letter sigma):

𝑛∑︁
𝑖=𝑚

𝑓 (𝑖) = 𝑓 (𝑚) + 𝑓 (𝑚 + 1) + · · · + 𝑓 (𝑛 − 1) + 𝑓 (𝑛)

𝑓 can be an arbitrary function Z → R. This was not really a definition (we still used the

· · · notation), but we can define the

∑
notation recursively like this:

Definition 5.2 (

∑
Notation).

𝑛∑︁
𝑖=𝑚

𝑓 (𝑖) B 0 𝑛 < 𝑚 “base case”

𝑛∑︁
𝑖=𝑚

𝑓 (𝑖) B 𝑓 (𝑛) +
𝑛−1∑︁
𝑖=𝑚

𝑓 (𝑖) 𝑛 ≥ 𝑚 “recursion case”

Similarly to the NatInd rule, we also have (at least one) base case in a recursive definition. Here,

we do not refer back to the definition. In contrast, we do so in the recursion case. This is a
little bit different from the NatInd rule, where we have an inductive case. In principle, recursive

definitions may have multiple recursion cases.

As hinted, that there is some similarity between recursion and induction. But while induction is

the bottom-up approach—we start by proving or defining
2
the base cases and use inductive cases

to successively build upon them—, recursion is top-down: we want to compute a function for

some value, but to do that, we first need to compute it for a smaller value. We go into recursion

until we (hopefully
3
) reach a base case. You will see that recursion and induction play nicely

together.

When introducing new notation, it makes sense to think about precedence rules.

∑
has the same

operator precedence as +, that is:

1∑︁
𝑖=0

𝑖 × 2𝑖 + 42 = (0 × 20 + 1 × 21) + 42.

Using the

∑
notation, our proposition now looks as follows. We are ready for our first formal

inductive proof:

2
Recall that we had inductive definitions when we defined the syntax of a formal language.

3
If we do not reach a base case for some value, the function is undefined for that value. For the

∑
notation we

ensured that this cannot happen.

147

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Theorem 5.3 (Gaussian Sum).

∀𝑛 ∈ N :

𝑛∑︁
𝑖=0

𝑖 =
𝑛(𝑛 + 1)

2

Proof by natural induction. We distinguish the following cases:

Base case:

0∑︁
𝑖=0

𝑖 = 0 +
−1∑︁
𝑖=0

𝑖 | Definition of

∑︁
= 0 + 0 | Definition of

∑︁
=
0 × (0 + 1)

2

| Arithmetic

Induction case: By induction, we know

∑𝑘
𝑖=0 𝑖 =

𝑘 (𝑘+1)
2

. It remains to show

∑𝑘+1
𝑖=0 𝑖 =

(𝑘+1) (𝑘+2)
2

:

𝑘+1∑︁
𝑖=0

𝑖 = (𝑘 + 1) +
𝑘∑︁
𝑖=0

𝑖 | Definition of

∑︁
= (𝑘 + 1) + 𝑘 (𝑘 + 1)

2

| Induction hypothesis

=
(𝑘 + 2) (𝑘 + 1)

2

| Arithmetic

=
(𝑘 + 1) (𝑘 + 2)

2

| Arithmetic

Thus we proved that

∑𝑛
𝑖=0 𝑖 =

𝑛 (𝑛+1)
2

for any 𝑛 ∈ N. □

Another example: we can define the factorial 𝑛! directly using recursion:

Definition 5.4 (Factorial).

0! B 1

(𝑛 + 1)! B (𝑛 + 1) × 𝑛!

However, we could also use the

∏
notation (capital Greek letter pi), which is the equivalent to

the

∑
notation but for multiplication.

Definition 5.5 (

∏
Notation).

𝑛∏
𝑖=𝑚

𝑓 (𝑖) B 1 𝑛 < 𝑚

𝑛∏
𝑖=𝑚

𝑓 (𝑖) B 𝑓 (𝑛) ×
𝑛−1∏
𝑖=𝑚

𝑓 (𝑖) 𝑛 ≥ 𝑚

148

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

∏
has the same operator precedence as ×, e.g.

1∏
𝑖=0

𝑖2 × 42 + 1337 = (02 × 12) × 42 + 1337.

Using this notation, the factorial function can be defined as 𝑛! =
∏𝑛

𝑖=1 𝑖 . It might seem rather

obvious that these two definitions are equivalent, but we can also prove it formally using induction:

Theorem 5.6 (Factorial in

∏
Notation).

𝑛! =

𝑛∏
𝑖=1

𝑖

Proof by natural induction. We distinguish two cases:

Base case:

0! = 1 | Definition of !

=

0∏
𝑖=1

𝑖 | Definition of

∏
Induction case: By induction, we know 𝑘! =

∏𝑘
𝑖=1 𝑖 .

(𝑘 + 1)! = (𝑘 + 1) × 𝑘! | Definition of !

= (𝑘 + 1) ×
𝑘∏
𝑖=1

𝑖 | Induction hypothesis

=

𝑘+1∏
𝑖=1

𝑖 | Definition of

∏
Hence, the two definitions of the factorial coincide. □

In Checkpoint 5.1, we posed the question of whether we can start the induction at a number

different from 0. To make this concrete: it seems that the sequence 𝑛! (1, 1, 2, 6, 24, 120, 720, . . .)

grows faster than the sequence 2
𝑛
(1, 2, 4, 8, 16, 32, 64, . . .). But 𝑛! > 2

𝑛
does not hold for 𝑛 ≤ 3. So

we want to show ∀𝑛 ∈ N≥4 : 𝑛! > 2
𝑛
. But obviously, our induction rule does not directly match

our proposition. However, we can rewrite it a little: ∀𝑛 ∈ N : 𝑛 ≥ 4→ 𝑛! > 2
𝑛
. In all its detail,

the proof looks like this:

Theorem 5.7 (Factorial vs. Power of 2).

∀𝑛 ∈ N≥4 : 𝑛! > 2
𝑛

Proof. We show the equivalent proposition ∀𝑛 ∈ N : 𝑛 ≥ 4 → 𝑛! > 2
𝑛
by natural induction.

Therefore, we distinguish two cases:

Base case: 0 ≥ 4 is false, so there is nothing left to show.

149

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Induction case: By induction, we know 𝑘 ≥ 4→ 𝑘! > 2
𝑘
. It remains to show

(𝑘 + 1) ≥ 4→ (𝑘 + 1)! > 2
𝑘+1.

We distinguish three cases:

𝑘 < 3: 𝑘 + 1 ≥ 4 is equivalent to 𝑘 ≥ 3. This contradicts 𝑘 < 3, so we are done.

𝑘 = 3:

(𝑘 + 1)! = 4! | 𝑘 = 3, arithmetic

= 24 | Computation of 4!

> 16 | Arithmetic

= 2
4 | Arithmetic

= 2
𝑘+1 | 𝑘 = 3, arithmetic

𝑘 > 3:

(𝑘 + 1)! = (𝑘 + 1) × 𝑘! | Definition of 𝑛!

> (𝑘 + 1) × 2𝑘 | Induction hypothesis, 𝑘 ≥ 4↔ 𝑘 > 3

> 2 × 2𝑘 | Arithmetic (𝑘 > 3→ 𝑘 ≥ 1)

= 2
𝑘+1 | Definition of 2

𝑛

Hence, we proved that ∀𝑛 ∈ N≥4 : 𝑛! > 2
𝑛
. □

This proof spells out many technical details. Mathematicians would probably consider the base

case as well as the case 𝑘 < 3 to be obvious. They might even call our case 𝑘 = 3 the base case and

only 𝑘 > 3 the induction case. However it is good to be aware of what really happens here. So in

this course, we require you to have roughly the same level of detail in your proofs. Furthermore,

there are computer programs that can automatically check proofs, so-called proof assistants. They

also require you to reason precisely.

b Checkpoint 5.8: Natural Induction—Your Turn!

• Prove that ∀𝑛 ∈ N : 2𝑛 ≤ 2
𝑛
.

• Come up with a formula for the sum of the first 𝑛 even numbers. Prove it correct just

like we did for the Gaussian sum.

There is still one proof left from the chapter on sets. With natural induction, we have missing

proof strategy to do this proof:

Theorem 5.9 (Power Set Cardinality of Finite Sets). For every finite set 𝐴, we have

|P(𝐴) | = 2
|𝐴 | .

Proof by natural induction on the size of 𝐴. We distinguish two cases:

150

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Base case: In this case we have |𝐴| = 0, so 𝐴 = ∅.

|P(𝐴) | = |P(∅) | | |𝐴| = 0

= | {∅} | | Definition P
= 1 | Definition | · |
= 2

0 | Arithmetic

= 2
|𝐴 | | 𝐴 = ∅

Induction case: By induction we know |𝐴| = 𝑘 → |P(𝐴) | = 2
|𝐴 |

for every set 𝐴. We need to

show |P(𝐴) | = 2
|𝐴 |

for an arbitrary but fixed set 𝐴 with |𝐴| = 𝑘 + 1. Because of |𝐴| = 𝑘 + 1,
there must be an 𝑎 ∈ 𝐴. Let 𝐴′ B 𝐴 \ {𝑎}. Since |𝐴′ | = 𝑘 , we know |P(𝐴′) | = 2

|𝐴′ |
using

the induction hypothesis. We may split P(𝐴) into sets that contain 𝑎 and such that don’t.

Formally, this is P(𝐴) = P(𝐴′) ∪⋃𝑋 ∈P(𝐴′) {𝑋 ∪ {𝑎}}. Note that the unions are all disjoint.
Thus we have:

|P(𝐴) | =
���� P(𝐴′) ∪ ⋃

𝑋 ∈P(𝐴′)
{𝑋 ∪ {𝑎}}

���� | Disjoint decomposition, see above

= |P(𝐴′) | +
���� ⋃
𝑋 ∈P(𝐴′)

{𝑋 ∪ {𝑎}}
���� | Cardinality of Disjoint Sets (Theorem 4.31)

= |P(𝐴′) | +
∑︁

𝑋 ∈P(𝐴′)
| {𝑋 ∪ {𝑎}} | | Cardinality of Disjoint Sets

= |P(𝐴′) | +
| P (𝐴′) |∑︁
𝑖=1

1 | Definition | · |

= 2 × |P(𝐴′) | | Arithmetic

= 2 × 2 |𝐴′ | | |P(𝐴′) | = 2
|𝐴′ |

= 2 × 2𝑘 | |𝐴′ | = 𝑘
= 2

𝑘+1 | Arithmetic

= 2
|𝐴 | | |𝐴| = 𝑘 + 1

It follows that the power set of any finite set 𝐴 has cardinality 2
|𝐴 |
. □

By writing “Proof by natural induction on the size of 𝐴” we were not as formal as possible. The

formal statement would have been ∀𝑛 ∈ N : ∀𝐴 : |𝐴| = 𝑛 → |P(𝐴) | = 2
|𝐴 |
. However, the textual

form is completely fine and a bit easier to read.

151

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Ç Going Beyond: Why Does Induction Work?

In this course, you might have learned that asking for a proof can help to see why things

work. Can we prove induction? This question is related to asking: what are the natural

numbers? They form such a basic concept that it seems hard to define them. If you are

clever, you might say that we can dissect the natural numbers into 0 and successors of
natural numbers 𝑆 (𝑛). Now it is rather easy to see that we can give a BNF for this:

N ∋ 𝑛 F 0 | 𝑆 (𝑛)

But is this the only way to model the natural numbers? Are there other equivalent models?

To answer these questions, it helps to characterize the natural numbers by their properties.

Giuseppe Peano did this in his “Arithmetices principia, nova methodo exposita,” published

in 1889. The following is not Peano’s original formulation, but one that works in first-order

logic with equality. It is commonly known as Peano Arithmetic.
The natural numbers N satisfy the following axioms:

1. 0 ∈ N

2. ∀𝑛 ∈ N : 𝑆 (𝑛) ∈ N (the natural numbers are closed under 𝑆)

3. ∀𝑛,𝑚 ∈ N : 𝑆 (𝑛) = 𝑆 (𝑚) → 𝑛 =𝑚 (𝑆 is injective)

4. ∀𝑛 ∈ N : 𝑆 (𝑛) ≠ 0 (constructor disjointness)

Now, these axioms seem fairly reasonable, but we are not done yet. Consider this model:

0 • • • · · ·

• •

The nodes • and 0 all denote natural numbers, an arrow 𝑛 →𝑚 means𝑚 = 𝑆 (𝑛). While

the chain 0→ • → · · · is what we intend, there is also this strange cycle. If we defined ≤
to be the reflexive-transitive closure of 𝑆 , it would not be well-founded. To get rid of junk

like the cycle, we have the last axiom:

5. (𝜓 (0) ∧ ∀𝑛 ∈ N : 𝜓 (𝑛) → 𝜓 (𝑆 (𝑛))) → ∀𝑛 ∈ N : 𝜓 (𝑛) (induction axiom)

𝜓 denotes any predicate-form. It might be tempting to write ∀𝜓 : . . . for the last axiom, but

quantifying over predicates or predicate-forms is only possible in higher-order logic. So

technically, we have infinitely many copies of the last axiom, one for each predicate-form.

Our induction rule is actually derived from this fifth axiom. Using induction, we may also

prove that ≤ is a well-order.

Now the model given by the BNF satisfies all these axioms, but only because we assume

similar ones for arbitrary inductive definitions. This will lead us to a more general form of

natural induction, namely structural induction.

To summarize, we cannot really give a formal answer why induction works. Instead,

induction is so deeply linked to the natural numbers that it is part of their definition.

152

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

� Important Individual: Giuseppe Peano

Giuseppe Peano (1858-1932) was an Italian mathematician and linguist.

Hewas a founder ofmathematical logic and set theory. Hismost famous

work is the axiomatization of the natural numbers. Furthermore, some

notations such as ∪ and ∩ for the set union or intersection, respectively,
as well as the symbol for the existential quantifier ∃ were introduced
by him.

5.2 Complete Induction

Recall the definition of the Fibonacci function from the introduction:

Definition 5.10 (Fibonacci).

fib : N→ N
fib(0) B 0

fib(1) B 1

fib(𝑛 + 2) B fib(𝑛) + fib(𝑛 + 1)

Why didn’t we directly prove ∀𝑛 ∈ N : fib(𝑛) < 2
𝑛
? Let us try. First, we consider the two base

cases of the recursive definition.
4
For 𝑛 = 0, we have fib(0) = 0 < 1 = 2

0
. For 𝑛 = 1, we have

fib(1) = 1 < 2 = 2
1
. Now for 𝑛 = 𝑘 + 2, we have fib(𝑘 + 2) = fib(𝑘) + fib(𝑘 + 1). By induction we

also know that fib(𝑘 + 1) < 2
𝑘+1

. But our list of assumptions does not contain fib(𝑘) < 2
𝑘
. Sadly,

we know nothing about fib(𝑘). We are stuck!

If this seems strange to you, you are absolutely right. It is true that our list of assumptions does

not contain anything about fib(𝑘), but when we do induction, we conceptually build up a chain:

we first show that our proposition 𝑃 holds for 0, then we show 𝑃 (1) given 𝑃 (0) as induction
hypothesis, then 𝑃 (2) given 𝑃 (1) and so on. But why shouldn’t we be able to use 𝑃 (0) as well
when proving 𝑃 (2)? Or more generally, why shouldn’t we use 𝑃 (𝑙) for any 𝑙 ∈ N with 𝑙 < 𝑘 when

proving 𝑃 (𝑘)? All of this works perfectly fine. And indeed, there is a variant of induction that

gives us such a stronger induction hypothesis: complete induction. Sometimes, this is called

strong induction as well. Here is what the proof rule looks like:

∀𝑛 ∈ N : 𝑃 (𝑛) CompInd

𝑘 ∈ N
IH : ∀𝑙 ∈ N : 𝑙 < 𝑘 → 𝑃 (𝑙) 𝑃 (𝑘)

Interestingly, the rule does not distinguish between a base and an induction case anymore. But

still, we usually have to show 𝑃 (0) separately, since the induction hypothesis is useless for 𝑘 = 0:

for any number 𝑙 ∈ N, 𝑙 < 0 is always false.

We are now ready to prove our theorem:

4
Technically, we apply our induction rule first and in the inductive case, we do a case distinction on 𝑛.

153

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Theorem 5.11 (Upper Bounds for fib).

∀𝑛 ∈ N : fib(𝑛) < 2
𝑛

Proof by complete induction. By induction, we know ∀𝑙 ∈ N : 𝑙 < 𝑘 → fib(𝑙) < 2
𝑙
. It remains to

show that fib(𝑘) < 2
𝑘
. We distinguish three cases:

𝑘 = 0:

fib(𝑘) = fib(0) | 𝑘 = 0

= 0 | Definition of fib

< 1 | Arithmetic

= 2
0 | Arithmetic

= 2
𝑘 | 0 = 𝑘

𝑘 = 1:

fib(𝑘) = fib(1) | 𝑘 = 1

= 1 | Definition of fib

< 2 | Arithmetic

= 2
1 | Arithmetic

= 2
𝑘 | 1 = 𝑘

𝑘 = 𝑘 ′ + 2:

fib(𝑘) = fib(𝑘 ′ + 2) | 𝑘 = 𝑘 ′ + 2
= fib(𝑘 ′) + fib(𝑘 ′ + 1) | Definition of fib

< 2
𝑘 ′ + 2𝑘 ′+1 | Induction hypothesis for 𝑘 ′, 𝑘 ′ + 1

< 2
𝑘 ′+1 + 2𝑘 ′+1 | Arithmetic

< 2
𝑘 ′+2 | Arithmetic

= 2
𝑘 | 𝑘 ′ + 2 = 𝑘

Hence, we have shown that 2
𝑛
is an upper bound for fib(𝑛). □

b Checkpoint 5.12: Lower Bounds

Show that ∀𝑛 ∈ N≥11 : fib(𝑛) >
(
2

3

)𝑛
. You may use the that fib(11) = 89,

(
2

3

)
11

< 87,

fib(12) = 144, and

(
2

3

)
12

< 130. Hint:

(
2

3

)𝑘
= 2

𝑘

3
𝑘 .

Another interesting property we can show using complete induction is that ≤ on N is well-
founded. Recall that an order R is well-founded on a setM if every non-empty subsetU ⊆ M
has a minimal element. Intuitively, this is clear for ≤. The minimal element is just minU (e.g.

min {4, 2, 8} = 2). But we haven’t proved yet that min on N is well-defined. Let’s do this now.

154

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Theorem 5.13 (≤ is Well-Founded on N).

∀U ⊆ N : U ≠ ∅ → ∃𝑚 ∈ U : ∀𝑚′ ∈ U :𝑚′ ≮ 𝑚

Proof. LetU ⊆ NwithU ≠ ∅. It remains to show thatU has a minimal element. We prove this by

contradiction: We assume thatU has no minimal element, i.e. ∀𝑚 ∈ U : ∃𝑚′ ∈ U :𝑚′ < 𝑚, and

have to derive⊥. It suffices to show that there is no natural number inU, formally∀𝑛 ∈ N : 𝑛 ∉ U.

We do this by complete induction, so we get ∀𝑘 ∈ N : 𝑘 < 𝑛 → 𝑘 ∉ U as induction hypothesis.

Now assume 𝑛 ∈ U. In combination with the assumption thatU has no minimal element we

obtain an𝑚′ ∈ U with𝑚′ < 𝑛. Finally, we distinguish two cases:

𝑛 = 0: We have𝑚′ < 0, a contradiction.

𝑛 > 0: We may instantiate the induction hypothesis with𝑚′ and obtain𝑚′ ∉ U, again a contra-

diction.

Thus we have shown that ≤ is well-founded on N. □

Ç GoingBeyond: Is Complete Induction Really Stronger thanNatural Induction?

From the application perspective, we clearly have seen that complete induction is more

powerful than natural induction. But it turns out that we can prove complete induction

using natural induction. Given any predicate-form𝜓 (𝑛), we can view the proof rule as a

formula in first-order logic, which we’ll need to prove:

Lemma 5.14 (Complete induction).

(∀𝑘 ∈ N : (∀𝑙 ∈ N : 𝑙 < 𝑘 → 𝜓 (𝑙)) → 𝜓 (𝑘)) → ∀𝑛 ∈ N : 𝜓 (𝑛)

Proof. Assume ∀𝑘 ∈ N : (∀𝑙 ∈ N : 𝑙 < 𝑘 → 𝜓 (𝑙)) → 𝜓 (𝑘). We call this assumption 𝐻 . Let

𝑛 ∈ N be arbitrary, but fixed. By applying 𝐻 , it remains to show ∀𝑙 ∈ N : 𝑙 < 𝑛 → 𝜓 (𝑙).
We prove this by natural induction on 𝑛 ∈ N:

Base case: We need to show ∀𝑙 ∈ N : 𝑙 < 0→ 𝜓 (𝑙). Let 𝑙 ∈ N be arbitrary, but fixed. We

are done since 𝑙 < 0 is always false.

Induction case: By induction, we have ∀𝑙 ∈ N : 𝑙 < 𝑛 → 𝜓 (𝑙). We need to show

∀𝑙 ∈ N : 𝑙 < 𝑛 + 1→ 𝜓 (𝑙). Assume 𝑙 ∈ N such that 𝑙 < 𝑛 + 1. We consider two cases:

𝑙 ≠ 𝑛: In this case, we know that 𝑙 < 𝑛. We are done by applying the induction

hypothesis.

𝑙 = 𝑛: As 𝑙 = 𝑛, showing𝜓 (𝑛) suffices. By applying 𝐻 from the very beginning, we

are left with ∀𝑙 ∈ N : 𝑙 < 𝑛 → 𝜓 (𝑙), which is exactly the induction hypothesis.

Thus we have proven complete induction. □

This proof is quite technical and pretty abstract. In particular, the order of quantification

during the natural induction step is important. If you do not understand what is happening

here, it might help to draw the proof tables.

155

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

b Checkpoint 5.15: Fibonacci Without Complete Induction

It is possible to show ∀𝑛 ∈ N : fib(𝑛) < 2
𝑛
without complete induction. Hint: prove

∀𝑛 ∈ N : fib(𝑛) < 2
𝑛 ∧ fib(𝑛 + 1) < 2

𝑛+1

by natural induction.

5.3 Quantified Inductive Hypotheses

We can also use recursion when programming: We write a function that figures out what case it

is in and calls itself as necessary. Unfortunately, if we do this naively, our programs might not be

as fast as possible. Recall our definition of the factorial function:

0! B 1

(𝑛 + 1)! B (𝑛 + 1) × 𝑛!

Now consider this computation of 4!:

4! = 4 × 3!
= 4 × (3 × 2!)
= 4 × (3 × (2 × 1!))
= 4 × (3 × (2 × (1 × 0!)))
= 4 × (3 × (2 × (1 × 1)))
= 4 × (3 × (2 × 1))
= 4 × (3 × 2)
= 4 × 6
= 24

We first build up a chain of multiplications and then evaluate this to a single value. This is

exactly what our definition tells us to do. But it also means that our computer has to store this

multiplication chain in memory. The computation would be much faster if we were allowed to

reassociate the multiplications such that we could directly multiply 4 × 3, then 12 × 2 and so on.

And indeed, this is possible if we change our definition:

Definition 5.16 (Tail-Recursive Factorial).

fac : N × N→ N
fac(𝑎, 0) B 𝑎

fac(𝑎, 𝑛) B fac(𝑛 × 𝑎, 𝑛 − 1) 𝑛 > 0

156

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Now the claim is that to compute 𝑛!, we can also compute fac(1, 𝑛). So let’s compute fac(1, 4):

fac(1, 4) = fac(4 × 1, 4 − 1)
= fac(4, 3) = fac(3 × 4, 3 − 1)
= fac(12, 2) = fac(2 × 12, 2 − 1)
= fac(24, 1) = fac(1 × 24, 1 − 1)
= fac(24, 0) = 24

Observe that when going into recursion, there are no other computations left to do. This is in

contrast to !, where we have to perform one multiplication after each recursion step. Recursive

functions without computations after going into recursion are called tail recursive.

Compared to the original version, the tail-recursive fac has one additional argument 𝑎. We use

this to carry our intermediate results around. This argument has a special name, we call it the

accumulator.

After discussing the differences, let’s return to what the two functions (should) share: they should

in some sense compute the same result. More formally, we claimed that ∀𝑛 ∈ N : fac(1, 𝑛) = 𝑛!.
Can we prove it? The recursive case of fac(𝑎, 𝑛) only depends on fac(𝑛 × 𝑎, 𝑛 − 1), so natural

induction should suffice. The base case is simple: fac(1, 0) = 1 = 1!. For the induction case, our

induction hypothesis is fac(1, 𝑘) = 𝑘!. By definition, we have fac(1, 𝑘+1) = fac((𝑘+1)×1, (𝑘+1)−
1) = fac(𝑘 + 1, 𝑘). But unfortunately, we cannot apply our induction hypothesis here! It requires

that the accumulator is 1, but we have 𝑘 +1 instead. Clearly, we need an induction hypothesis with

an arbitrary natural number as the first argument of fac, something like ∀𝑎 ∈ N : fac(𝑎, 𝑛) = . . .
But what is fac(𝑎, 𝑛) for an 𝑎 that is not necessarily 1? The base case of our definition gives us 𝑎

instead of just 1. So we have 𝑎 × 0!. And also fac(42, 2) gives us 42 × 2 × 1 = 42 × 2!. So we might

guess that fac(𝑎, 𝑛) = 𝑎 × 𝑛!. So let’s try to prove the following lemma:

Lemma 5.17 (Correctness of Tail-Recursive Factorial).

∀𝑛 ∈ N : ∀𝑎 ∈ N : fac(𝑎, 𝑛) = 𝑎 × 𝑛!

Proof by natural induction. We distinguish the following cases:

Base case: Let 𝑎 ∈ N be arbitrary, but fixed.

fac(𝑎, 0) = 𝑎 | Definition of fac

= 𝑎 × 1 | Arithmetic

= 𝑎 × 0! | Definition of 𝑛!

Induction case: By induction, we have ∀𝑎 ∈ N : fac(𝑎, 𝑘) = 𝑎 × 𝑘!. Let 𝑎 ∈ N be arbitrary, but

fixed.

fac(𝑎, 𝑘 + 1) = fac((𝑘 + 1) × 𝑎, (𝑘 + 1) − 1) | Definition of fac

= fac((𝑘 + 1) × 𝑎, 𝑘) | Arithmetic

= ((𝑘 + 1) × 𝑎) × 𝑘! | Induction hypothesis for (𝑘 + 1) × 𝑎
= 𝑎 × ((𝑘 + 1) × 𝑘!) | Arithmetic

= 𝑎 × (𝑘 + 1)! | Definition of 𝑛!

157

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Hence, we have shown that fac(𝑎, 𝑛) = 𝑎 × 𝑛! holds for every 𝑎, 𝑛 ∈ N. □

Now ∀𝑛 ∈ N : ∀𝑎 ∈ N : fac(𝑎, 𝑛) = 𝑎 × 𝑛! trivially implies ∀𝑛 ∈ N : fac(1, 𝑛) = 𝑛! (change the
quantifier order and instantiate with 1).

Note that the order of quantifiers in the Lemma is important: we want to apply the induction rule

first and have a quantified induction hypothesis ∀𝑎 ∈ N : . . . If the quantifier order was the other

way round, we would have introduced 𝑎 first. If we applied the induction rule then, our induction

hypothesis would have been fac(𝑎, 𝑘) = 𝑎 × 𝑘! for some fixed 𝑎. Observe that our proof would

have failed with this induction hypothesis, just as it did when we had fac(1, 𝑘) = 𝑘! as induction
hypothesis.

Let’s summarize our procedure. We first had a proposition that we could not prove. Then we

made it more general by quantifying over the accumulator. A more general proposition says more

(for example ∀𝑛 ∈ N : 𝑛 ≥ 0 is more informative than 1 ≥ 0). Sometimes we also say that a more

general proposition is stronger : if we have it as an assumption it is more powerful. But in the first

place, we make our goal stronger. Would you expect that fighting against a stronger opponent

is easier in the end? Remarkably, this was the case. Strengthening our goal also meant that we

got a stronger induction hypothesis. This is why our process is sometimes called strengthening
the inductive hypothesis. And using the stronger induction hypothesis we could show our the

stronger proposition. Finally, we could prove our original proposition as the stronger one directly

implied it.

b Checkpoint 5.18: Recursion Transformer

Consider the following recursive functions:

pow : N × N→ N mul : N × N→ N
pow(𝑛, 0) B 1 mul(𝑛, 0) B 0

pow(𝑛,𝑚) B 𝑛 × pow(𝑛,𝑚 − 1) 𝑚 > 0 mul(𝑛,𝑚) B 𝑛 +mul(𝑛,𝑚 − 1) 𝑚 > 0

Make them tail-recursive and prove that your tail-recursive versions are correct.

5.4 Structural Induction

Natural numbers are not the only thing that forms an infinite set, this is also the case for most of

the languages we defined in Chapter 1. Can we reason inductively for them as well?

Further, we may also view the natural numbers as a special case of an inductive definition:

N ∋ 𝑛 F 0 | 𝑆 (𝑛)

0 is just the smallest natural number. 𝑆 is the successor function that adds 1 to its argument. So

with this definition, we have 4 = 𝑆 (𝑆 (𝑆 (𝑆 (0)))). Can we use this to view natural induction as a

special case of a more general concept?

The answer to both questions is yes. Let’s reconsider our language of binary trees:

T ∋ 𝜑,𝜓 F 𝐿 | 𝑈 𝜑 | 𝐵 𝜑 𝜓

158

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Here, our induction rule needs to distinguish three cases. The 𝐿 case is similar to the 0 case for

natural induction, and the 𝑈 case is similar to the induction case, or 𝑆 case if you want to. In the

𝐵 case, we have two meta-variables. Since we conceptually work from smaller to larger trees, we

may assume that 𝑃 holds for both subtrees. This that we get two induction hypotheses. So our

proof rule looks like this:

∀𝑡 ∈ T : 𝑃 (𝑡) StructInd T

𝑃 (𝐿) 𝑡1 ∈ T
IH1 : 𝑃 (𝑡1)

𝑃 (𝑈 𝑡1)
𝑡1, 𝑡2 ∈ T
IH1 : 𝑃 (𝑡1)
IH2 : 𝑃 (𝑡2)

𝑃 (𝐵 𝑡1 𝑡2)

As there are infinitely many BNFs, we cannot write down all structural induction rules here. But

the principle to create them is always the same: for every case of our BNF, we have one case in

our proof. For every meta-variable, we get one inductive hypothesis.

Now let’s do an example proof using structural induction. Recall that the breadth of a tree is the

count of its leafs. The depth is the length of the longest path from the root to a leaf. Formally,

they were defined as:

breadth : T → N depth : T → N
breadth(𝐿) = 1 depth(𝐿) = 0

breadth(𝑈 𝑡1) = breadth(𝑡1) depth(𝑈 𝑡1) = 1 + depth(𝑡1)
breadth(𝐵 𝑡1 𝑡2) = breadth(𝑡1) + breadth(𝑡2) depth(𝐵 𝑡1 𝑡2) = 1 +max(depth(𝑡1), depth(𝑡2))

Theorem 5.19 (Upper Bound for the Breadth of Binary Trees).

∀𝑡 ∈ T : breadth(𝑡) ≤ 2
depth(𝑡)

Proof by structural induction on T . We distinguish three cases:

𝐿:

breadth(𝐿) = 1 | Definition of breadth

≤ 2
0 | Arithmetic

= 2
depth(𝐿) | Definition of depth

𝑈 𝑡1: By induction, we have breadth(𝑡1) ≤ 2
depth(𝑡1)

.

breadth(𝑈 𝑡1) = breadth(𝑡1) | Definition of breadth

≤ 2
depth(𝑡1) | Induction hypothesis

≤ 2
1+depth(𝑡1) | Arithmetic

= 2
depth(𝑈 𝑡1) | Definition of depth

159

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

𝐵 𝑡1 𝑡2: By induction, we have breadth(𝑡1) ≤ 2
depth(𝑡1)

and breadth(𝑡2) ≤ 2
depth(𝑡2)

.

breadth(𝐵 𝑡1 𝑡2) = breadth(𝑡1) + breadth(𝑡2) | Definition of breadth

≤ 2
depth(𝑡1) + 2depth(𝑡2) | Induction hypotheses

≤ 2 ×max(2depth(𝑡1) , 2depth(𝑡2)) | Arithmetic

= 2 × 2max(depth(𝑡1),depth(𝑡2)) | Arithmetic

= 2
1+max(depth(𝑡1),depth(𝑡2)) | Arithmetic

= 2
depth(𝐵 𝑡1 𝑡2) | Definition of depth

Thus we have shown that 2
depth(𝑡)

is an upper bound for the breadth of any binary tree 𝑡 . □

5.5 Well-founded Induction

If there is complete induction as a stronger variant of natural induction, is there a stronger variant

of structural induction as well? As it turns out, there is, and it’s called well-founded induction
or Noetherian induction (after Emmy Noether).

� Important Individual: Emmy Noether

Amalie Emmy Noether (1882-1935) was a German mathematician who

made many important contributions to abstract algebra and theoretical

physics. When she completed her doctorate in 1907 on invariant theory,

she was the second woman to receive a PhD in mathematics from

a German university. She was also the first woman in Germany to

habilitate in mathematics. Although her work was well-received, she

worked for many years without any pay. Several mathematicians

and physicists (including Albert Einstein) describe her as the most

important woman in the history of mathematics.

Here is what the proof rule looks like:

Hwf : R ⊆ X × X is a well-founded order ∀𝑥 ∈ X : 𝑃 (𝑥) WFInd R
𝑥 ∈ X
IH : ∀𝑦 ∈ X : (𝑦, 𝑥) ∈ R ∧ 𝑦 ≠ 𝑥 → 𝑃 (𝑦) 𝑃 (𝑥)

When proving 𝑃 (𝑥), the WFInd rules gives us one assumption for free: for every element 𝑦 that is

“smaller” than 𝑥 according toR, wemay assume that 𝑃 (𝑦) holds. The rule is quite similar to the one

of complete induction, although more general. We know that ≤ is a well-order, so we can simply

plug it in forR (andN forX). Then the induction hypothesis is just∀𝑦 ∈ N : 𝑦 ≤ 𝑥∧𝑦 ≠ 𝑥 → 𝑃 (𝑦),
which is the same as ∀𝑦 ∈ N : 𝑦 < 𝑥 → 𝑃 (𝑦).
In most cases, the other variants of induction we have seen are already enough. Nevertheless,

well-founded induction is really useful. For instance, we can show that every natural number ≥ 2

has a prime factorization:

160

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Definition 5.20 (Prime Factorization). A prime factorization is a decomposition of a natural
number into a product that only consists of prime factors.

< Example 5.21: Prime Factorization

10 = 2 × 5 12 = 2 × 3 × 4 24 = 2 × 2 × 3 × 4

As the example suggests, the prime factorization of any 𝑛 ∈ N≥2 is also unique, but we won’t

show this here. We only show that one exists.

Now, what do we know about prime factors? The prime factorization of a prime is the prime

itself. If we know a prime factorization of two numbers 𝑥,𝑦, we also know a prime factorization

of 𝑥 × 𝑦, it is just the product of the prime factors of 𝑥 and the prime factors of 𝑦. So when we

want to show that 8 has a prime factorization, this is easy if we have already shown that both 4

and 2 have a prime factorization (since 8 = 4 × 2). You might already be able to see how we will

build up our “chain” of reasoning:

2 3 5 7

4 6 9 10

8

Figure 5.22: Order of reasoning for the proof

Now, what is the order that we sketched in Figure 5.22? It is just the divisibility relation{
(𝑥,𝑦) ∈ N2

≥2
�� ∃𝑘 ∈ N : 𝑦 = 𝑘 × 𝑥

}
.

This will be the well-order we choose for the induction. But first, we have to prove that it really

is a well-order:

Lemma 5.23 (Divisibility Relation Is a Well-Order). The relation

R B
{
(𝑥,𝑦) ∈ N2

≥2
�� ∃𝑘 ∈ N : 𝑦 = 𝑘 × 𝑥

}
is a well-order on N≥2.

Proof. We need to show that R is an order, meaning that it is reflexive, transitive and anti-

symmetric, as well as that R is well-founded.

Reflexive We need to show that ∀𝑥 ∈ N≥2 : (𝑥, 𝑥) ∈ R, which is equivalent to

∀𝑥 ∈ N≥2 : ∃𝑘 ∈ N : 𝑥 = 𝑘 × 𝑥 .

Let 𝑥 ∈ N≥2 be arbitrary, but fixed. Pick 𝑘 B 1. We are done, since 1 × 𝑥 = 𝑥 .

161

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Transitive We need to show ∀𝑥,𝑦, 𝑧 : (𝑥,𝑦) ∈ R ∧ (𝑦, 𝑧) ∈ R → (𝑥, 𝑧) ∈ R, that is

∀𝑥,𝑦, 𝑧 ∈ N≥2 : (∃𝑘1 ∈ N : 𝑦 = 𝑘 × 𝑥) ∧ (∃𝑘2 ∈ N : 𝑧 = 𝑘 × 𝑦) → ∃𝑘 ∈ N : 𝑧 = 𝑘 × 𝑥 .

Let 𝑥,𝑦, 𝑧 ∈ N≥2 be arbitrary, but fixed. Assume that there are 𝑘1, 𝑘2 ∈ N such that𝑦 = 𝑘1×𝑥
and 𝑧 = 𝑘2 × 𝑦. Pick 𝑘 B 𝑘1 × 𝑘2. We have

𝑧 = 𝑘2 × 𝑦 | Assumption

= 𝑘2 × (𝑘1 × 𝑥) | Assumption

= (𝑘2 × 𝑘1) × 𝑥 | Associativity
= 𝑘 × 𝑥 | Definition of 𝑘

Anti-symmetric We need to show ∀𝑥,𝑦 : (𝑥,𝑦) ∈ R ∧ (𝑦, 𝑥) ∈ R → 𝑥 = 𝑦, i.e.

∀𝑥,𝑦 ∈ N≥2 : (∃𝑘1 ∈ N : 𝑦 = 𝑘1 × 𝑥) ∧ (∃𝑘2 ∈ N : 𝑥 = 𝑘2 × 𝑦) → 𝑥 = 𝑦.

Let 𝑥,𝑦 ∈ N≥2 be arbitrary, but fixed. Assume 𝑘1, 𝑘2 ∈ N such that 𝑦 = 𝑘1 ×𝑥 and 𝑥 = 𝑘2 ×𝑦.
By our assumptions, we have 𝑥 = 𝑘2 ×𝑦 = 𝑘2 × 𝑘1 × 𝑥 . Now 𝑥 = 𝑘 × 𝑥 holds for arbitrary 𝑥

only if 𝑘 = 1, which means that we have 𝑘2 × 𝑘1 = 1. But since 𝑘1, 𝑘2 ∈ N, it must be that

𝑘1 = 𝑘2 = 1. So finally, 𝑥 = 𝑘2 × 𝑦 = 1 × 𝑦 = 𝑦.

Well-founded We need to show that every non-empty subset ofN≥2 contains a minimal element

with respect to R, i.e.

∀U ⊆ N≥2 : U ≠ ∅ → ∃𝑚 ∈ U : ∀𝑚′ ∈ U : (𝑚′,𝑚) ∈ R →𝑚 =𝑚′.

LetU ⊆ N≥2 be arbitrary, but fixed. Assume thatU is not empty. Since ≤ is a well-order

on N≥2, there exists a minimal element minU with respect to ≤. Pick𝑚 B minU. Let

𝑚′ ∈ U be arbitrary, but fixed. Unfolding the definition of R, it remains to show that

(∃𝑘 ∈ N : minU = 𝑘 ×𝑚′) → minU =𝑚′.

Assume a 𝑘 ∈ N such that𝑚′ = 𝑘 ×minU. We distinguish three cases:

minU =𝑚′: We are done since this is exactly what we needed to show.

minU > 𝑚′: Contradiction: minU is a minimal element with respect to ≤.
minU < 𝑚′: Contradicts minU = 𝑘 ×𝑚′ and 𝑘 ∈ N.

This means that R is well-founded on N≥2. □

b Checkpoint 5.24: Wrong Relation

What would have gone wrong if we had chosen R B
{
(𝑥,𝑦) ∈ N2

�� ∃𝑘 ∈ N : 𝑦 = 𝑘 × 𝑥
}
?

Now we are ready for the induction:

Theorem 5.25 (Existence of the Prime Factorization). Every natural number 𝑛 ∈ N≥2 has a prime
factorization.

162

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

Proof. By Lemma 5.23, we know that R is a well-order, so we can perform well-founded induction.

Now we need to show that an arbitrary 𝑥 ∈ N≥2 has a prime factorization. By induction, we know

that any strict divisor 𝑦 ∈ N≥2 of 𝑥 has a prime factorization. We distinguish two cases:

𝑛 is a prime: A prime factorization of 𝑛 is just 𝑛 (i.e. the unary product, if you want to).

𝑛 is not a prime: In this case there are two factors 𝑘1, 𝑘2 ∉ {1, 𝑛} such that 𝑛 = 𝑘1 × 𝑘2. By
applying the induction hypothesis we obtain a prime factorization 𝑘1 and one for 𝑘2. A

prime factorization of 𝑛 is just the product of these prime factorizations.

So we have shown that there exists a prime factorization for every natural number ≥ 2. □

After showing that R is a well-order, the proof was amazingly short. Now you might ask: can I

really trust this? Is there a proof for well-founded induction? Or is it again just something we

assume? It turns out that we can really prove well-founded induction. To show that our proof

rule is correct, we need to show that what is below the line implies what is above the line, i.e.

∀𝑥 ∈ X : 𝑃 (𝑥). So more formally, the lemma looks like this:

Lemma 5.26 (Well-Founded Induction). Let X be a set and R ⊆ X2 a well-order. Assuming

∀𝑥 ∈ X : (∀𝑦 ∈ X : (𝑦, 𝑥) ∈ R ∧ 𝑦 ≠ 𝑥 → 𝑃 (𝑦)) → 𝑃 (𝑥),

∀𝑥 ∈ X : 𝑃 (𝑥) holds.

Proof. Let X be a set and R ⊆ X2
a well-order with

∀𝑥 ∈ X : (∀𝑦 ∈ X : (𝑦, 𝑥) ∈ R ∧ 𝑦 ≠ 𝑥 → 𝑃 (𝑦)) → 𝑃 (𝑥) .

We call this assumption 𝐻 . Now assume ∀𝑥 ∈ X : 𝑃 (𝑥) did not hold. Then there is a non-empty

set of “troublemakers” 𝑆 B {𝑥 ∈ X | ¬𝑃 (𝑥)}. Since R is well-founded, there is a minimal element

𝑥 ∈ 𝑆 . Our goal is to derive a contradiction, concretely that there are no troublemakers. To that

end, it suffices to show that there is no minimal element in the set of troublemakers, i.e. that 𝑃 (𝑥)
holds.

Now remember that𝐻 corresponds to the proof that one has to write when applying well-founded

induction. It says that if 𝑃 (𝑦) holds for all elements 𝑦 ∈ X that are “smaller” than 𝑥 , then 𝑃 (𝑥)
holds as well. So when we apply 𝐻 , we only have to show

∀𝑦 ∈ X : (𝑦, 𝑥) ∈ R ∧ 𝑦 ≠ 𝑥 → 𝑃 (𝑦).

Let 𝑦 ∈ X. Assume (𝑦, 𝑥) ∈ R and 𝑦 ≠ 𝑥 , i.e. that 𝑦 is “smaller” than 𝑥 . Now if 𝑃 (𝑦) holds, then
we also have shown that 𝑃 (𝑥) holds. If instead 𝑃 (𝑦) does not hold, then 𝑦 is a troublemaker as

well, formally 𝑦 ∈ 𝑆 . But since 𝑦 is “smaller” than 𝑥 , 𝑥 cannot be a minimal element of 𝑆 . Thus we

have shown that there are no troublemakers and 𝑃 (𝑥) holds for all 𝑥 ∈ X. □

163

Introduction to Mathematics in Computer Science Chapter 5: Inductive Proofs

b Checkpoint 5.27: Well-founded Induction Only Works If . . .

What is wrong with the following proof?

Proof that ∀𝑧 ∈ Z : 𝑧 > 42. By well-founded induction with ≤, we know that

∀𝑧′ : 𝑧′ ≤ 𝑧 ∧ 𝑧′ ≠ 𝑧 → 𝑧′ > 42.

We instantiate the induction hypothesis with 𝑧 − 1 and obtain

𝑧 − 1 ≤ 𝑧 ∧ 𝑧 − 1 ≠ 𝑧 → 𝑧 − 1 > 42.

Since 𝑧 − 1 ≤ 𝑧 and 𝑧 − 1 ≠ 𝑧 hold trivially, we have 𝑧 − 1 > 42. But since 𝑧 > 𝑧 − 1, we
ultimately have 𝑧 > 42. □

5.6 Summary

In this chapter, we have seen induction as an extremely useful technique to prove properties

of infinite sets. We considered four variants of induction, where well-founded induction is the

most-general. The other ones can be viewed as specializations thereof. In the following diagram,

there are our four variants with their proof rules (only the obligations as a formula in first-order

logic) as well as their relationship. Of course, the proof rule of structural induction depends on

the inductive definition we consider, here it’s just the natural numbers.

well-founded induction

structural induction complete induction

natural induction

subexpression relation ≤

inductive definition stepping only from 𝑛 to 𝑛 + 1

∀𝑥 ∈ X : (∀𝑦 ∈ X : (𝑦, 𝑥) ∈ R ∧ 𝑦 ≠ 𝑥 → 𝑃 (𝑦)) → 𝑃 (𝑥)

𝑃 (0) ∧ (∀𝑛 ∈ N : 𝑃 (𝑛) → 𝑃 (𝑆 (𝑛))) ∀𝑘 ∈ N : (∀𝑙 ∈ N : 𝑙 < 𝑘 → 𝑃 (𝑙)) → 𝑃 (𝑘)

𝑃 (0) ∧ (∀𝑘 ∈ N : 𝑃 (𝑘) → 𝑃 (𝑘 + 1))

Figure 5.28: Overview of the induction variants

Furthermore, you know that sometimes a proposition cannot be proved directly but a stronger one

can. In this context, we discussed tail-recursive functions and quantified inductive hypotheses.

164

You have now reached the end of the mathematics preparatory course. Take a moment to think
about all the different things that we discussed: we started with formal languages in order to define
expressions and assign meaning to them. Then, we learned to reason using propositional and first-
order logic, as well as how to write correct proofs. After that, we took a tour through the land of sets
and relations before concluding with another proof technique, induction.

You will very likely encounter many of these topics again during your studies, some earlier, some
later. Feel free to come back to this book whenever you need a refresher on any of these topics.

Finally, we would like to take this moment to thank all the people that made the prep course possible,
beyond the writing of this book. All the work that goes into each iteration, from organizing rooms to
preparing lectures and creating materials, is conducted voluntarily by the team members, who give
up a large part of their spare time before and during the course to provide you with the best possible
experience. If you liked this preparatory course, we will all greatly appreciate if you consider helping
out in the next iterations. But for now, we wish you a good start into your studies!

165

This page is intentionally left blank.

A
�� Natural Numbers

Natural numbers have been around you since you learned to count. By now, you probably know

how to use them for calculating basic things. But having formalized a logic and a proof system,

how can we use these new tools to prove claims about (natural) numbers?

One possibility is to formalize them as well. There is a rigorous axiomatic approach to this,

first proposed by the mathematician Giuseppe Peano in 1889, see Page 153. While this rigorous

approach is rather beautiful, it can be hard to work with, since all the properties we would expect

to hold need to be proven from first principles, which takes a long time and thus is outside the

scope of this book.

Since we still want to be able to handle numbers in our proofs, we cheat a little bit and only define

the properties that we specifically need for the tasks in this precourse. Furthermore, we presume

some knowledge about the very basic laws natural numbers follow.

Definition A.1 (Natural Numbers). Four our needs, natural numbers simply are distinct objects
labelled 0, 1, 2, 3, . . . There are infinitely many natural numbers and together they form the set
N = {0, 1, 2, 3, . . .}.

There always is the discussion whether 0 is a natural number or if 1 is the first one. Both can

have their advantages because they make certain definitions a little cleaner but, in general, this

does not matter too much. In computer science, the natural numbers typically include 0, as they

do in this book.

Next, we introduce the basic operations on natural numbers.

Addition of Natural Numbers The operator + denotes addition.

Fact A.2 (Properties of Addition). Addition of natural numbers has the following two basic properties:

(a) + is commutative, that is, for all natural numbers 𝑎, 𝑏 ∈ N it holds that

𝑎 + 𝑏 = 𝑏 + 𝑎.

(b) + is associative, that is, for all natural numbers 𝑎, 𝑏, 𝑐 ∈ N it holds that

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)

Furthermore, 0 is the neutral element with respect to addition:

Fact A.3 (Neutral Element of Addition). ∀𝑛 ∈ N : 𝑛 + 0 = 𝑛

The proofs are omitted here as it would require deeper formalization of natural numbers. For this

precourse it suffices to simply know these properties.

Similarly, we can define the second important operation on natural numbers:

167

Introduction to Mathematics in Computer Science Chapter A: Natural Numbers

Multiplication of Natural Numbers The operator × denotes multiplication. Oftentimes,

when working with variables, we simply omit the cross, such that 𝑎 × 𝑏 is the same as 𝑎𝑏.

Fact A.4 (Properties of Multiplication). Multiplication of natural numbers has the following two
basic properties:

(a) × is commutative, that is, for all natural numbers 𝑎, 𝑏 ∈ N it holds that

𝑎𝑏 = 𝑏𝑎.

(b) × is associative, that is, for all natural numbers 𝑎, 𝑏, 𝑐 ∈ N it holds that

(𝑎𝑏)𝑐 = 𝑎(𝑏𝑐).

The neutral element of multiplication is 1:

Fact A.5 (Neutral Element of Multiplication). ∀𝑛 ∈ N : 𝑛 × 1 = 𝑛

Now, + and × together fulfill the distributive property:

Fact A.6 (Distributivity). Let 𝑎, 𝑏, 𝑐 ∈ N natural numbers.

(a) 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 .

(b) (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐

Additionally, all the other rules you happen to know from school hold (e.g. ∀𝑛 ∈ N : 𝑛 × 0 = 0)

and whenever we use them, we do so implicitly.

You might ask yourself now, what’s up with − and ÷, why are they not introduced the same way?

You can subtract natural numbers, or at least, some of them, right? Well, yes, but actually no.

In order to properly define subtraction, you would need to expand to the integers (Z) in order

to account for negative numbers, for example when subtracting 6 from 5. Similarly, you need

the rational numbers (Q) to give a proper definition of division. Furthermore, the concept of

equivalence relations (see Section 4.2.4) is required to formally construct these numbers.

Another important aspect when you talk about numbers in general is their order. We want to be

able to say that a number is greater, less than, or equal to another number.

Definition A.7 (Less-Equal). The natural numbers are ordered by the total order ≤, defined as
follows:

𝑎 ≤ 𝑏 B ∃𝑘 ∈ N : 𝑏 = 𝑎 + 𝑘
𝑎 < 𝑏 B 𝑎 ≤ 𝑏 ∧ 𝑎 ≠ 𝑏

When 𝑎 < 𝑏, we say that a is less than 𝑏. Similarly, if 𝑎 ≤ 𝑏, then a is less or equal to 𝑏. When
we flip the order, we get >, called greater than.

In proofs, one sometimes needs to do a case distinction on how two numbers relate to each other

(i.e. if they are the same or one is less or greater than the other). This is what trichotomy is

about. In general, a trichotomy is a splitting into three parts, and this is what we do here as well:

168

Introduction to Mathematics in Computer Science Chapter A: Natural Numbers

Fact A.8 (Trichotomy). Let 𝑎, 𝑏 ∈ N be two natural numbers. Then exactly one of the following
statements holds:

(a) 𝑎 < 𝑏

(b) 𝑎 = 𝑏

(c) 𝑎 > 𝑏

Finally, we introduce concept of factors and divisors. Again, note that this alone does not enable

us to divide natural numbers arbitrarily.

Definition A.9 (Factor, Divisor). Let 𝑛 ∈ N be a natural number. We call a number 𝑥 ∈ N, 𝑥 ≤ 𝑛
a factor or a divisor of 𝑛 if and only if there is another natural number that, multiplied with 𝑥 ,
results in 𝑛. Formally, this means

𝑥 | 𝑛 ⇐⇒ ∃𝑘 ∈ N : 𝑥𝑘 = 𝑛.

We also say that 𝑛 is divisible by 𝑥 . In the case that 𝑥 is not a factor of 𝑛, we write

𝑥 ∤ 𝑛 or ¬𝑥 | 𝑛.

From this definition, we can derive two simple properties of natural numbers that you are probably

already familiar with.

Definition A.10 (Even, Odd). Let 𝑛 ∈ N be a natural number.

(a) We call 𝑛 even if and only if 2 | 𝑛, that is, 2 is a factor of 𝑛.

(b) We call 𝑛 odd if and only if 2 ∤ 𝑛, that is, 2 is not a factor of 𝑛.

In fact, the latter is equivalent to the more common definition: 𝑛 is odd if and only if 2 | 𝑛 + 1.

169

This page is intentionally left blank.

Index

Π notation, 148

Σ notation, 147

absorption laws (logic), 34

absorption laws (sets), 112

abstract syntax, 13

abstract syntax tree, 13

accumulator, 157

addition, 167

algebra, 34

alpha-renaming, 45

ancestor (trees), 8

antecedent, 27

antisymmetric relation, 131

arity, 40

arrow diagram, 124

associativity laws (logic), 34

associativity laws (sets), 112

assumptions, 63

AST, 13

asymmetric relation, 131

axiom, 14, 59

axiomatization, 59

Backus–Naur form, 7

base case, 146, 147

big-step semantics, 19

bijection, 128

bijective, 128

binary (operators), 10

binary relation, 121

binder, 44

binding place, 43

BNF, 7

bound occurrence, 43

breadth (trees), 159

calculus, 15

canonical predicates, 50

capture, 45

capture-avoiding renaming, 46

capture-avoiding substitution, 47

cardinality, 115

cartesian product, 109, 110

case distinction, 93

child (trees), 8

closed (under variables), 43

commutativity laws (logic), 34

commutativity laws (sets), 112

complement, 102

complement laws (logic), 34

complement laws (sets), 112

complete (defining equations), 21

complete induction, 153

completeness, 36

composition, 133

conclusion, 14

conclusion (proof), 64

concrete syntax, 13

conjunction, 27

connected relation, 131

consequent, 27

context-free grammar, 7

contradiction, 74

contradictory, 29

FOL, 50

modulo theory, 60

propositional logic, 29

contraposition law (logic), 34

core language, 18

corollary, 78

countable set, 139

countably infinite set, 139

De Morgan’s laws (logic), 34

De Morgan’s laws (sets), 112

definability of operators (logic), 34

defining equation, 20

denotational semantics, 14, 20

depth (trees), 159

derivation tree, 15

derived constructs, 18

descendant (trees), 8

difference, 102

directed graph, 124

disjoint, 101

171

Introduction to Mathematics in Computer Science INDEX

disjoint (defining equations), 20

disjunction, 27

distributive property, 168

distributivity laws (logic), 34

distributivity laws (sets), 112

divisor, 169

domain, 122

domination laws (logic), 34

domination laws (sets), 112

double complement (sets), 112

double negation law (logic), 34

edge

in graphs, 124

in trees, 8

element, 98

empty relation, 123

empty set, 99

enumerative notation (relations), 123

environment, 16

on a universe, 48

environment weakening law, 57

equinumerous sets, 137

equivalence

material, 31

semantic, 32

semantic, of formulas (FOL), 50

semantic, of terms (FOL), 50

equivalence class, 134

equivalence relation, 134

evaluation

of formulas (propositional logic), 28

on terms (FOL), 48

even, 169

excluded middle (law of), 37

exclusive or, 33

factor, 169

factorial, 148

falsity, 24

Fibonacci function, 145, 153

first-order describable, 55

first-order distinguishable, 55

FOL

syntax of formulas, 40

syntax of terms, 46

FOL, short for first-order logic, 41

formalization, 59

formula (FOL), 40

free (in formula), 43

free use, 43

fully parenthesized expression, 9

function, 127

functional, 127

Gaussian sum, 146

goal, 63

graph, 124

greater than, 168

higher-order logic, 42

idempotence laws (logic), 34

idempotence laws (sets), 112

identity laws (logic), 34

identity laws (sets), 112

identity relation, 123

iff, 31

image, 122

implication, 27

material, 27

inclusive or (see disjunction), 33

index set, 107

induction case, 146

induction hypothesis, 146

inductive definition, 6

inference rule, 14

infix notation, 11, 121

injective, 127

inner node (trees), 8

interpretation

of formulas, 49

of logical symbols, 47

intersection, 101

inverse relation, 123

invisible identifier, 43

irreflexive relation, 130

labeled tree, 9

law, 34

laws of equality, 57

leaf (trees), 8

left-associativity, 10

left-total, 126

left-unique, 127

lemma, 77

172

Introduction to Mathematics in Computer Science INDEX

less or equal to, 168

less than, 168

lexer, 13

linear order, 135

list notation (relations), 124

logical matrix, 124

meta-variables, 6

metalanguage, 7

minimal element, 136

minimum, 136

model (see universe), 48

modular congruence, 134

modulus, 134

modus ponens, 70

multiplication, 168

mutually inductive definition, 12

name analysis, 44

natural induction, 146

natural numbers, 167

natural semantics, 19

necessary, 30

negation, 27

neutral element (addition), 167

neutral element (multiplication), 168

node (graph), 124

node (trees), 8

Noetherian induction, 160

non-contradiction (law of), 37

object language, 7

obligation (proof), 64

odd, 169

one-to-one relation, 128

opening (scope), 43

operational semantics, 14

operator (truth-functional), 24

or (inclusive), 27

order relation, 135

pair, 108

parent (trees), 8

parser, 13

partial function, 127

partial order, 135

Peano Arithmetic, 152

postfix notation, 11

power set, 118

precedence rules, 10

precondition (see antecedent), 27

predicate, 39, 40

predicate logic, see FOL, 41

predicate-form, 51

predicative notation (relations), 123

prefix notation, 11

premise, 14

prenex normal form, 52

proof state, 63

proof table, 66

proper subset, 104

proper superset, 104

proposition, 24

proposition (atomic), 24

provability, 76

modulo theory, 83

pulling out existential quantifiers (FOL law), 57

pulling out universal quantifiers (FOL law), 57

quantifier, 41

existential, 41

forall, 41

universal, 41

quantifier game, 52

quantifier negation laws, 57

quantifier reordering laws, 57

quantifier splitting laws, 57

range, 122

recursion, 147

recursion case, 147

recursive, 20

reflexive closure, 132

reflexive relation, 130

refutability, 29

propositional logic, 29

representative (equivalence relation), 134

residue class, 134

rewriting, 33, 82

right-associativity, 10

right-total, 126

right-unique, 127

root (trees), 8

rooted tree, 8

Russel’s antinomy, 141

Russel’s paradox, 141

173

Introduction to Mathematics in Computer Science INDEX

satisfaction, 49

under environment, 49

satisfiability, 29

FOL, 50

modulo theory, 60

propositional logic, 29

scope, 43

active, 43

semantics, 5

serial, 126

set, 97

sibling (trees), 8

signature, 41

size (trees), 16, 21

small-step semantics, 19

soundness (of deduction rules), 64

source set (relations), 121

statement, 24

strict linear order, 135

strict order relation, 135

strict subset, 104

strict total order, 135

strong induction, 153

strongly connected relation, 131

structural operational semantics, 19

subset, 103

subtree, 8

successor, 152

sufficient, 30

superset, 103

surjective, 126

symmetric closure, 132

symmetric relation, 131

syntactic equality, 11

syntactic sugar, 18

syntax, 5

syntax tree, 8

tail recursion, 157

target set (relations), 121

term (FOL), 46

tertium non datur, 37

theorem, 77

theory, 59

to apply (during a proof), 85

to introduce (during a proof), 85

to shadow (a scope), 44

tombstone, 88

total function, 127

total order, 135

total relation, 131

transitive closure, 132

transitive relation, 130

tree, 8

trichotomy, 168

triple, 108

truth, 29

deductive, 77

propositional logic, 29

semantic, 29

semantic (FOL), 50

semantic (FOL, for theories), 60

syntactic, 77

truth (the proposition), 24

truth value, 24

truth variable, 26

tuple, 108

unary (operators), 10

uncountably infinite set, 139

union, 102

unique, 54

universal relation, 123

universal set (relations), 121

universe, 47

unused quantifier removal laws, 57

validity, 29

FOL, 50

modulo theory, 60

propositional logic, 29

variables (object), 40

variables (predicate), 40

vertex (graph), 124

well-formed (expressions), 6

well-formed term, 80

well-founded, 136, 154

well-founded induction, 160

well-order, 136

witness, 80

174

Introduction to Mathematics in Computer Science INDEX

License

This book is available under a Creative Commons Attribution-ShareAlike 4.0 license. You are

encouraged to share this book with others, to adapt parts of it for your own resources, to steal

graphics, techniques, wordings or other explanations, especially if it serves to educate people

about mathematics! In particular, you do not need our permission to do so. If you for any

particular reason need the source code, please reach out under the email below. The license

requires attribution, such as is given in this preface.

Beware, reader!

Although this book was thoroughly checked by for bugs, mistakes, typos, errors, inconsistencies,

historical inaccuracies, nonsense, and other design flaws, it may still contain several of those. Of

course, all of these are entirely the fault of the primary authors. If you find a mistake, or if you

have additional feedback, please tell us at book@vorkurs.cs.uni-saarland.de.

175

mailto:book@vorkurs.cs.uni-saarland.de

	Preface
	Contents
	Formal Languages
	Syntax
	Backus–Naur Form
	Syntax Trees
	Precedence Rules
	Syntactic Equality
	More Complex Languages

	Semantics
	Operational Semantics
	Denotational Semantics

	Summary

	Logic
	Propositional Logic
	Statements and Propositions
	Operators
	Syntax and Semantics
	Implication and Equivalence
	Laws

	First-Order Logic
	Syntax
	Semantics
	Working with First-Order Logic
	Laws
	Theories

	Proofs and Deductions
	A Proof System for Propositional Logic
	What Makes a Proof
	Proof Tables
	Example Proofs
	Proof Strategies
	Metatheory

	A Proof System for First-Order Logic
	Rules for Quantifiers
	Rules for Equality

	Proof Tables in Practice
	Textual Proofs
	How to Translate a Proof Table

	Sets and Relations
	Sets
	Notation
	Set Operators
	Tuples
	Laws of Set Theory
	Cardinality of Finite Sets
	Power Sets

	Relations
	Notation
	Common Properties
	Properties of Relations on Universal Sets
	Equivalence and Order Relations
	Cardinality of Infinite Sets

	Problems With Naive Set Theory

	Inductive Proofs
	Natural Induction
	Complete Induction
	Quantified Inductive Hypotheses
	Structural Induction
	Well-founded Induction
	Summary

	Natural Numbers
	Index

